《DiffusionNER: Boundary Diffusion for Named Entity Recognition》

2024-04-26 18:36

本文主要是介绍《DiffusionNER: Boundary Diffusion for Named Entity Recognition》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Submitted 22 May, 2023; originally announced May 2023.

Comments: Accepted to ACL 2023, submission version

https://github.com/tricktreat/DiffusionNER
在这里插入图片描述

在这里插入图片描述

问题:

  • 命名实体识别任务中存在的噪声跨度(边界不清晰)如何处理?

解决方法:

  • 提出了 DIFFUSIONNER 方法,将命名实体识别任务建模为一个边界去噪扩散过程,从而生成清晰的命名实体。
  • 在训练过程中,DIFFUSIONNER 通过一个固定的前向扩散过程逐渐向金标准实体边界添加噪声,然后学习一个逆扩散过程来恢复实体边界。
  • 在推断过程中,DIFFUSIONNER 首先从标准高斯分布中随机抽样一些嘈杂的跨度,然后通过学习的逆扩散过程对它们进行去噪,从而生成清晰的命名实体。
  • 提出的边界去噪扩散过程允许逐步细化和动态采样实体,使 DIFFUSIONNER 具备高效灵活的实体生成能力。

这种方法的优点是可以有效处理噪声跨度,并且在实验中表现出与先前最先进模型相当甚至更好的性能。

当涉及到NER(命名实体识别)时,通常的问题之一是嘈杂的跨度,即实体的边界不清晰。这可能是由于文本中的歧义或其他因素导致的。传统的方法可能会将实体识别为包含噪声或不完整的片段,而不是完整的实体。

DIFFUSIONNER 提出了一种新的方法来解决这个问题。它将命名实体识别任务视为一个去噪扩散过程。这个过程可以类比为在文本中“扩散”实体的边界,将不清晰的边界变得更加清晰,并从中生成完整的实体。

在训练过程中,DIFFUSIONNER 逐步向实体的边界添加高斯噪声。这意味着它会在实体的边界周围加入一些随机的噪声。然后,通过一个逆扩散过程,模型会尝试逐步去除这些噪声,以便尽可能地恢复原始的、清晰的实体边界。

举个例子,假设我们有一句话:“John Smith 在 New York 的时候工作。”在这个例子中,“John Smith”和“New York”是两个命名实体。但是,由于文本中的一些歧义或不确定性,实体的边界可能不是非常清晰。DIFFUSIONNER 的训练过程会逐步在实体边界周围添加一些噪声,比如说“Joh…mith”或“Ne…k”。然后,模型会尝试通过学习的逆扩散过程去除这些噪声,以尽可能准确地恢复原始的实体边界,即“John Smith”和“New York”。

在推断阶段,模型可以从一个先验的高斯分布中抽样一些噪声跨度,并利用学到的逆扩散过程来生成完整的实体边界。

创新点

  1. DIFFUSIONNER 是首个将扩散模型应用于命名实体识别 (NER) 的方法

    • 传统上,扩散模型在其他领域(如图像处理)中被广泛应用,但在自然语言理解任务中很少被使用。
    • DIFFUSIONNER 是第一个将扩散模型应用于 NER 这种在离散文本序列上的抽取式任务的方法。
  2. 为自然语言理解任务提供了新的视角

    • 通过将扩散模型引入到 NER 任务中,DIFFUSIONNER 提供了一种全新的思路和视角,拓展了自然语言理解领域中的方法和技术。
  3. DIFFUSIONNER 将命名实体识别视为边界去噪扩散过程

    • DIFFUSIONNER 提出了一种全新的方式来解决 NER 中存在的噪声跨度问题。
    • 它将 NER 任务建模为一个边界去噪扩散过程,通过逐步的边界优化过程,在嘈杂的跨度上生成实体。
  4. DIFFUSIONNER 是一种新颖的生成式 NER 方法

    • DIFFUSIONNER 采用了一种全新的生成方式来生成命名实体,即通过在嘈杂的跨度上进行逐步的边界优化,最终生成清晰的实体。
    • 这种方法在 NER 领域中是一种创新的方法,可能带来更好的性能和效果。

总的来说,DIFFUSIONNER 提供了一种全新的思路和方法,将扩散模型引入到 NER 任务中,为自然语言理解领域带来了新的探索方向和可能性。

扩散模型

  1. 扩散模型的背景

    • 扩散模型是由Sohl-Dickstein等人在2015年提出的一种深度潜在生成模型。
    • 最近的研究表明,扩散模型在图像和音频生成领域取得了令人瞩目的成果。
  2. 扩散模型的组成

    • 扩散模型由前向扩散过程和逆向扩散过程组成。
    • 前向扩散过程通过按照固定的方差时间表逐步向数据分布添加噪声,逐渐扰动数据的分布。
    • 逆向扩散过程则学习恢复数据的结构。
  3. 在自然语言理解领域的挑战

    • 尽管扩散模型在连续状态空间(如图像或波形)中取得了成功,但在自然语言处理领域仍存在一些挑战,这是因为文本的离散性质。
  4. 扩散模型在自然语言处理领域的应用

    • Diffusion-LM通过嵌入和舍入操作将离散文本模型化为连续空间,并提出额外的分类器来对可控文本生成施加约束。
    • DiffuSeq和SeqDiffuSeq将基于扩散的文本生成扩展到更广泛的设置中,提出了基于仅编码器和编码器-解码器架构的无分类器序列到序列扩散框架。
  5. DIFFUSIONNER的贡献

    • DIFFUSIONNER旨在解决离散文本序列上的抽取式任务,即命名实体识别。

总的来说,这段文字介绍了扩散模型在自然语言理解领域的应用和相关研究,并指出了 DIFFUSIONNER 的创新之处及其在离散文本序列任务中的应用。

这篇关于《DiffusionNER: Boundary Diffusion for Named Entity Recognition》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/938348

相关文章

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。

Differential Diffusion,赋予每个像素它应有的力量,以及在comfyui中的测试效果

🥽原论文要点 首先是原论文地址:https://differential-diffusion.github.io/paper.pdf 其次是git介绍地址:GitHub - exx8/differential-diffusion 感兴趣的朋友们可以自行阅读。 首先,论文开篇就给了一个例子: 我们的方法根据给定的图片和文本提示,以不同的程度改变图像的不同区域。这种可控性允许我们再现

jupyter在加载pkl文件时报错ModuleNotFoundError: No module named 'pandas.core.internals.managers'; '的解决方法

笔者当看到这个错误的时候一脸懵逼,在pycharm上正常运行的code 放在jupyter就不成了,于是就研究一翻。 一开始以为自己的pkl文件有问题,研究重点放在这里,最后发现不是。 然后取搜索pycharm和jupyter下的python的\Lib\site-packages\pandas\core\internals有什么不同 发现jupyter下没有pandas\core\intern

diffusion model 合集

diffusion model 整理 DDPM: 前向一步到位,从数据集里的图片加噪声,根据随机到的 t t t 决定混合的比例,反向要慢慢迭代,DDPM是用了1000步迭代。模型的输入是带噪声图和 t,t 先生成embedding后,用通道和的方式加到每一层中间去: 训练过程是对每个样本分配一个随机的t,采样一个高斯噪声 ϵ \epsilon ϵ,然后根据 t 对图片和噪声进行混合,将加噪

Python实现requests-post(Multipart/form-data格式)boundary=----WebKitForm

这种模式相比于普通post,实在太烦了,这种基本都是用来上传文件(包括图片、excel、doc等) import requestsfrom requests_toolbelt.multipart.encoder import MultipartEncoderimport jsonurl = 'http://www.requests-post.com'headers = {'Accept':

ModuleNotFoundError: No module named ‘diffusers.models.dual_transformer_2d‘解决方法

Python应用运行报错,部分错误信息如下: Traceback (most recent call last): File “\pipelines_ootd\unet_vton_2d_blocks.py”, line 29, in from diffusers.models.dual_transformer_2d import DualTransformer2DModel ModuleNotF

人脸识别开源项目之-face_recognition

特性 从图片里找到人脸 定位图片中的所有人脸: import face_recognitionimage = face_recognition.load_image_file("your_file.jpg")face_locations = face_recognition.face_locations(image) 识别人脸关键点 识别人脸关键点,包括眼睛、鼻子、嘴和下巴。

Attribute Recognition简记1-Video-Based Pedestrian Attribute Recognition

创新点 1.行人属性库 2.行人属性识别的RNN框架及其池化策略 总结 先看看行人属性识别RNN结构: backbone是ResNet50,输出是每一帧的空间特征。这组特征被送到两个分支,分别是空间池化和时间建模。最后两种特征拼接。然后分类(FC)。 LSTM关注帧间变化。受cvpr《Recurrent Convolutional Network for Video-Based Person

Face Recognition简记1-A Performance Comparison of Loss Functions for Deep Face Recognition

创新点 1.各种loss的比较 总结 很久没见到这么专业的比较了,好高兴。 好像印证了一句话,没有免费的午餐。。。。 ArcFace 和 Angular Margin Softmax是性能比较突出的

如何在算家云搭建模型Stable-diffusion-webUI(AI绘画)

一、Stable Diffusion WebUI简介 Stable Diffusion WebUI 是一个网页版的 AI 绘画工具,基于强大的绘画模型Stable Diffusion ,可以实现文生图、图生图等。 二、模型搭建流程 1.选择主机和镜像 (1)进入算家云的“应用社区”,点击搜索或者找到"stable-diffusion-webui,进入详情页后,点击“创建应用”