生物信息学入门 使用 RNAseq counts数据进行差异表达分析(DEG)——edgeR 算法 数据 代码 结果解读

本文主要是介绍生物信息学入门 使用 RNAseq counts数据进行差异表达分析(DEG)——edgeR 算法 数据 代码 结果解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       差异表达分析通常作为根据基因表达矩阵进行生物信息学分析的第一步,有助于我们观察基因在不同样本中的表达差异,从而确定要研究的基因和表型之间的联系。常用的基因表达数据来自基因芯片或高通量测序。虽然矩阵看起来差不多,但是由于服从不同的分布,因此在进行差异表达的时候需要用不同的方法。对于一般的生命科学领域科研人员来说,了解晦涩的算法并没有太大价值。本文力求精简,从数据——算法——结果三个方面给出最简单的示范。注意:文中代码仅适用于RNAseq的counts数据!使用的是edgeR算法!

1.数据准备

数据准备包括表达矩阵和分组矩阵。

表达矩阵:

分组矩阵:

第一列为样本名称,第二列为组名称,注意每一列都要有列名

2. 使用edgeR包进行差异分析

首先要安装edgeR包和gplots包

source("http://bioconductor.org/biocLite.R")
biocLite("edgeR")
biocLite("gplots")

读取数据

library("edgeR")
library('gplots')
setwd("C:/Users/lenovo/Desktop/sample")
foldChange=1 #fold change=1意思是差异是两倍
padj=0.05#padj=0.05意思是矫正后P值小于0.05
rt=read.csv("fpkm.csv",header=TRUE,row.names=1,check.names = FALSE)  
#读取矩阵文件,这是输入的数据路径,改成自己的文件名#
exp=as.matrix(rt) #转化为矩阵#
dimnames=list(rownames(exp),colnames(exp))
data=matrix(as.numeric(as.matrix(exp)),nrow=nrow(exp),dimnames=dimnames)#15,16行意思是将带引号的数据转换成数值#
data=data[rowMeans(data)>1,] #去除低表达的数据#

读取分组矩阵

group <- read.csv("datTraits.csv",header=TRUE,row.names=1,check.names = FALSE)
group <- group[,1] #定义比较组,按照癌症和正常样品数目修改#
design <- model.matrix(~group) #把group设置成一个model matrix#

计算步骤

y <- DGEList(counts=data,group=group) #group哪些是正常,哪些是癌症样本,让edgeR可以识别#
y <- calcNormFactors(y) #对因子矫正#
y <- estimateCommonDisp(y)#25,26估计变异系数,即估计方差;估计内部差异程度,看组间差异是否比内部差异大,如果大,可选为差异基因#
y <- estimateTagwiseDisp(y)
et <- exactTest(y,pair = c("healthy","T2D"))
topTags(et) #预览结果
summary(de <- decideTestsDGE(et))  #结果的统计信息,基于FDR
ordered_tags <- topTags(et, n=100000)
allDiff=ordered_tags$table
allDiff=allDiff[is.na(allDiff$FDR)==FALSE,]
diff=allDiff
newData=y$pseudo.counts

输出结果

write.csv(diff, "edgerOut.csv")
diffSig = diff[(diff$FDR < padj & (diff$logFC>foldChange | diff$logFC<(-foldChange))),]#筛选有显著差异的#
#write.table(diffSig, file="diffSig.xls",sep="\t",quote=F)#输出有显著差异表达的到diffSig这个文件#
write.csv(diffSig, "diffSig.csv")
diffUp = diff[(diff$FDR < padj & (diff$logFC>foldChange)),]#foldchange>0是上调,foldchange<0是下调#
#write.table(diffUp, file="up.xls",sep="\t",quote=F)#39-42把上调和下调分别输入up和down两个文件#
write.csv(diffUp, "diffUp.csv")
diffDown = diff[(diff$FDR < padj & (diff$logFC<(-foldChange))),]
#write.table(diffDown, file="down.xls",sep="\t",quote=F)
write.csv(diffDown, "diffDown.csv")

差异表达矩阵制作教程:https://blog.csdn.net/tuanzide5233/article/details/83659768

差异表达的热图绘制详见:https://blog.csdn.net/tuanzide5233/article/details/83659501

使用limma包对基因芯片数据进行差异表达分析教程:https://blog.csdn.net/tuanzide5233/article/details/83541443

GEO芯片数据差异表达分析时需要log2处理的原因:https://blog.csdn.net/tuanzide5233/article/details/88542805

GEO芯片数据差异表达分析时是否需要log2以及标准化的问题:https://blog.csdn.net/tuanzide5233/article/details/88542558

 

 

这篇关于生物信息学入门 使用 RNAseq counts数据进行差异表达分析(DEG)——edgeR 算法 数据 代码 结果解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935922

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各