生物信息学入门 使用 RNAseq counts数据进行差异表达分析(DEG)——edgeR 算法 数据 代码 结果解读

本文主要是介绍生物信息学入门 使用 RNAseq counts数据进行差异表达分析(DEG)——edgeR 算法 数据 代码 结果解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       差异表达分析通常作为根据基因表达矩阵进行生物信息学分析的第一步,有助于我们观察基因在不同样本中的表达差异,从而确定要研究的基因和表型之间的联系。常用的基因表达数据来自基因芯片或高通量测序。虽然矩阵看起来差不多,但是由于服从不同的分布,因此在进行差异表达的时候需要用不同的方法。对于一般的生命科学领域科研人员来说,了解晦涩的算法并没有太大价值。本文力求精简,从数据——算法——结果三个方面给出最简单的示范。注意:文中代码仅适用于RNAseq的counts数据!使用的是edgeR算法!

1.数据准备

数据准备包括表达矩阵和分组矩阵。

表达矩阵:

分组矩阵:

第一列为样本名称,第二列为组名称,注意每一列都要有列名

2. 使用edgeR包进行差异分析

首先要安装edgeR包和gplots包

source("http://bioconductor.org/biocLite.R")
biocLite("edgeR")
biocLite("gplots")

读取数据

library("edgeR")
library('gplots')
setwd("C:/Users/lenovo/Desktop/sample")
foldChange=1 #fold change=1意思是差异是两倍
padj=0.05#padj=0.05意思是矫正后P值小于0.05
rt=read.csv("fpkm.csv",header=TRUE,row.names=1,check.names = FALSE)  
#读取矩阵文件,这是输入的数据路径,改成自己的文件名#
exp=as.matrix(rt) #转化为矩阵#
dimnames=list(rownames(exp),colnames(exp))
data=matrix(as.numeric(as.matrix(exp)),nrow=nrow(exp),dimnames=dimnames)#15,16行意思是将带引号的数据转换成数值#
data=data[rowMeans(data)>1,] #去除低表达的数据#

读取分组矩阵

group <- read.csv("datTraits.csv",header=TRUE,row.names=1,check.names = FALSE)
group <- group[,1] #定义比较组,按照癌症和正常样品数目修改#
design <- model.matrix(~group) #把group设置成一个model matrix#

计算步骤

y <- DGEList(counts=data,group=group) #group哪些是正常,哪些是癌症样本,让edgeR可以识别#
y <- calcNormFactors(y) #对因子矫正#
y <- estimateCommonDisp(y)#25,26估计变异系数,即估计方差;估计内部差异程度,看组间差异是否比内部差异大,如果大,可选为差异基因#
y <- estimateTagwiseDisp(y)
et <- exactTest(y,pair = c("healthy","T2D"))
topTags(et) #预览结果
summary(de <- decideTestsDGE(et))  #结果的统计信息,基于FDR
ordered_tags <- topTags(et, n=100000)
allDiff=ordered_tags$table
allDiff=allDiff[is.na(allDiff$FDR)==FALSE,]
diff=allDiff
newData=y$pseudo.counts

输出结果

write.csv(diff, "edgerOut.csv")
diffSig = diff[(diff$FDR < padj & (diff$logFC>foldChange | diff$logFC<(-foldChange))),]#筛选有显著差异的#
#write.table(diffSig, file="diffSig.xls",sep="\t",quote=F)#输出有显著差异表达的到diffSig这个文件#
write.csv(diffSig, "diffSig.csv")
diffUp = diff[(diff$FDR < padj & (diff$logFC>foldChange)),]#foldchange>0是上调,foldchange<0是下调#
#write.table(diffUp, file="up.xls",sep="\t",quote=F)#39-42把上调和下调分别输入up和down两个文件#
write.csv(diffUp, "diffUp.csv")
diffDown = diff[(diff$FDR < padj & (diff$logFC<(-foldChange))),]
#write.table(diffDown, file="down.xls",sep="\t",quote=F)
write.csv(diffDown, "diffDown.csv")

差异表达矩阵制作教程:https://blog.csdn.net/tuanzide5233/article/details/83659768

差异表达的热图绘制详见:https://blog.csdn.net/tuanzide5233/article/details/83659501

使用limma包对基因芯片数据进行差异表达分析教程:https://blog.csdn.net/tuanzide5233/article/details/83541443

GEO芯片数据差异表达分析时需要log2处理的原因:https://blog.csdn.net/tuanzide5233/article/details/88542805

GEO芯片数据差异表达分析时是否需要log2以及标准化的问题:https://blog.csdn.net/tuanzide5233/article/details/88542558

 

 

这篇关于生物信息学入门 使用 RNAseq counts数据进行差异表达分析(DEG)——edgeR 算法 数据 代码 结果解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935922

相关文章

Spring Cloud之注册中心Nacos的使用详解

《SpringCloud之注册中心Nacos的使用详解》本文介绍SpringCloudAlibaba中的Nacos组件,对比了Nacos与Eureka的区别,展示了如何在项目中引入SpringClo... 目录Naacos服务注册/服务发现引⼊Spring Cloud Alibaba依赖引入Naco编程s依

Java springBoot初步使用websocket的代码示例

《JavaspringBoot初步使用websocket的代码示例》:本文主要介绍JavaspringBoot初步使用websocket的相关资料,WebSocket是一种实现实时双向通信的协... 目录一、什么是websocket二、依赖坐标地址1.springBoot父级依赖2.springBoot依赖

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

什么是 Java 的 CyclicBarrier(代码示例)

《什么是Java的CyclicBarrier(代码示例)》CyclicBarrier是多线程协同的利器,适合需要多次同步的场景,本文通过代码示例讲解什么是Java的CyclicBarrier,感... 你的回答(口语化,面试场景)面试官:什么是 Java 的 CyclicBarrier?你:好的,我来举个例

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务

Nginx如何进行流量按比例转发

《Nginx如何进行流量按比例转发》Nginx可以借助split_clients指令或通过weight参数以及Lua脚本实现流量按比例转发,下面小编就为大家介绍一下两种方式具体的操作步骤吧... 目录方式一:借助split_clients指令1. 配置split_clients2. 配置后端服务器组3. 配