LLM大语言模型(十二):关于ChatGLM3-6B不兼容Langchain 的Function Call

2024-04-25 17:12

本文主要是介绍LLM大语言模型(十二):关于ChatGLM3-6B不兼容Langchain 的Function Call,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

背景

基于本地的ChatGLM3-6B直接开发LangChain Function Call应用,发现其输出的action和action_input非常不稳定。

表现为生成的JSON格式回答非常容易出现不规范的情况,导致LangChain的Agent执行报错,或者进入死循环。

ChatGLM3-6B不兼容Langchain 的Function Call

Langchain 作为最主流的大模型中间件开源框架,备受广大开发者的认可。

Langchain中具有一套完整的 Agent 思维,包括灵活,简单的Function Call开发框架。

ChatGLM3-6B 模型在同量级模型中有出色的Function Call能力。

但遗憾的是,其训练过程并没有与Langchain进行原生对齐。

这导致如果直接使用Langchian框架,将会遇到以下问题:

  • 无法载入ChatGLM3-6B模型,Langchain中的 LLM模型 目前仅支持在线的几个主流模型,例如ChatGPT,Bard,Claude等

  • 无法正常使用 Agent 的 Function Call 功能,ChatGLM3-6B的截断点与 Langchain 支持的并不同。

  • 提示词不同,使用 Langchain 封装的 Agent 提示词完全无法胜任ChatGLM3-6B 的 Function Call 任务。

将GLM模型接入Langchain

首先,要解决第一个痛点:ChatGLM3-6B 模型能够被 Langchain 读入并执行。

那么,我们就需要基于Langchain的LLM类完成ChatGLM3-6B的模型实现。

封装自定义LLM

class ChatGLM3(LLM):max_token: int = 8192do_sample: bool = Falsetemperature: float = 0.8top_p = 0.8tokenizer: object = Nonemodel: object = Nonehistory: List = []tool_names: List = []has_search: bool = Falsedef __init__(self):super().__init__()@propertydef _llm_type(self) -> str:return "ChatGLM3"

接着,我们要写入读入模型的方法,这与 Langchain 支持的在线模型不同,这里使用 Huggingface 的方式进行读入。

def load_model(self, model_name_or_path=None):model_config = AutoConfig.from_pretrained(model_name_or_path,trust_remote_code=True)self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,trust_remote_code=True)self.model = AutoModel.from_pretrained(model_name_or_path, config=model_config, trust_remote_code=True).half().cuda()

按LangChain的格式构建Tool

其中包括工具的name,description,params等信息,可以被LangChain自动识别出来,加入到prompt中

import abcfrom typing import Type
from langchain.tools import BaseTool
from pydantic import BaseModel, Fieldclass CalculatorInput(BaseModel):calculation: str = Field(description="calculation to perform")class Calculator(BaseTool, abc.ABC):name = "Calculator"description = "Useful for when you need to calculate math problems"args_schema: Type[BaseModel] = CalculatorInputdef __init__(self):super().__init__()def _run(self, calculation: str) -> str:calculation = calculation.replace("^", "**")if "sqrt" in calculation:calculation = calculation.replace("sqrt", "math.sqrt")elif "log" in calculation:calculation = calculation.replace("log", "math.log")return eval(calculation)

从prompt中抽取tool信息并转换为ChatGLM能识别的结构 

然后,就是非常重要的一环。由于我们的工具调用和观察抓取与 Langchain 并不相同,我们需要对 Langchain 的提示词进行修改,并配上我们的提示词。

  • 我们先从AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION模板中截取到You have access to the following tools:\n\n")的关键词,并在合理插入已经注册的工具类型。

tool_prompts = prompt.split("You have access to the following tools:\n\n")[1].split("\n\nUse a json blob")[0].split("\n")tool_names = [tool.split(":")[0] for tool in tool_prompts]self.tool_names = tool_name

增加Observation结构

由于ChatGLM3-6B拥有Observation角色,这与Langchain中原本设定的Observation截断并不相同,因此,在这里,我们需要做提取,在这段代码中,我们需要对原本Langchain中的Observation进行截断,并补

充上我们的工具观察的结果。

def _extract_observation(self, prompt: str):return_json = prompt.split("Observation: ")[-1].split("\nThought:")[0]self.history.append({"role": "observation","content": return_json})return

将ChatGLM生成的结果转换为LangChain能识别的结构

在这,我们还需要对执行工具进行截断和填充,使得其能满足ChatGLM3-6B的思维模式

def _extract_tool(self):if len(self.history[-1]["metadata"]) > 0:metadata = self.history[-1]["metadata"]content = self.history[-1]["content"]if "tool_call" in content:for tool in self.tool_names:if tool in metadata:input_para = content.split("='")[-1].split("'")[0]action_json = {"action": tool,"action_input": input_para}self.has_search = Truereturn f"""
Action: 
```
{json.dumps(action_json, ensure_ascii=False)}
```"""final_answer_json = {"action": "Final Answer","action_input": self.history[-1]["content"]}self.has_search = Falsereturn f"""
Action: 
```
{json.dumps(final_answer_json, ensure_ascii=False)}
```"""

由于ChatgGLM3-6B的思维方式并没有Action: 字段,而这是langchain的截断点,因此,我们需要对其进行补充,使得Langchain能知道,此时模型进入调用工具阶段。

最后,我们要基于Langchain的构造,重写_call函数,包括历史记录,提示词等拼接内容。

def _call(self, prompt: str, history: List = [], stop: Optional[List[str]] = ["<|user|>"]):if not self.has_search:self.history, query = self._tool_history(prompt)else:self._extract_observation(prompt)query = ""_, self.history = self.model.chat(self.tokenizer,query,history=self.history,do_sample=self.do_sample,max_length=self.max_token,temperature=self.temperature,)response = self._extract_tool()history.append((prompt, response))return response

使用接入了Langchain的ChatGLM3-6B模型

在完成了上述工作之后,我们就已经拥有了支持Langchain的ChatGLM3-6B模型,我们在main.py中对其进行了简单调用

if __name__ == "__main__":llm = ChatGLM3()llm.load_model(MODEL_PATH)prompt = hub.pull("hwchase17/structured-chat-agent")# for single parameter without historytools = [Calculator()]agent = create_structured_chat_agent(llm=llm, tools=tools, prompt=prompt)agent_executor = AgentExecutor(agent=agent, tools=tools)ans = agent_executor.invoke({"input": "34 * 34"})print(ans)

注意事项

到此为止,你已经简单实现了使用LangChain调用ChatGLM3-6B模型来实现工具调用和其他基本用法。但是,在更多探索之前,请一定要看这部分的内容。这将能为你之后的开发减少不必要的麻烦。

使用LLMChain的工具

在官方的实现方案中,暂时不能解决在工具中仍然需要调用正常的LLMChain的操作,这意味着你在工具的设计中不能再次调用大模型进行更多操作,例如参数解析等,典型的错误例子为

LLMMathChain

如果使用官方Demo调用这个工具,则必然遇到以下错误:

line 120, in _process_llm_result

raise ValueError(f"unknown format from LLM: {llm_output}")

ValueError: unknown format from LLM: Action:

{"action": "Calculator", "action_input": "23*23"}

这是因为在模型构建的过程中,模型会解析到tools,而在tools中的常规调用模型并没有修改模型的系统提示词,模型还会尝试调用工具,这在常规的Chain中是错误的。

无效的参数和固定的参数

  • ChatGLM3-6B必须使用结构化的Agent,在Langchain中,我们只适配了AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION

  • 如果使用LLMSingleActionAgent来构建,stop参数无效。

  • 使用Tool.from_function时,args_schema无效。

  • 每次创建一个新的Tools,都必须有同名的yaml,或者自己实现传入格式化的工具说明。

兼容OpenAI API

官方的OpenAI API格式的demo,目前无法适配Langchain的工具。

 参考

  1. GitHub - THUDM/ChatGLM-6B: ChatGLM-6B: An Open Bilingual Dialogue Language Model | 开源双语对话语言模型
  2.  LLM大语言模型(十一):基于自定义的ChatGLM3-6B构建LangChain的chain-CSDN博客
  3. LLM大语言模型(十):LangChain自定义Agent使用自定义的LLM-CSDN博客
  4. LLM大语言模型(九):LangChain封装自定义的LLM-CSDN博客
  5. LLM大语言模型(八):ChatGLM3-6B使用的tokenizer模型BAAI/bge-large-zh-v1.5-CSDN博客
  6. LLM大语言模型(七):部署ChatGLM3-6B并提供HTTP server能力
  7. LLM大语言模型(四):在ChatGLM3-6B中使用langchain_chatglm3-6b langchain-CSDN博客
  8. LLM大语言模型(一):ChatGLM3-6B本地部署-CSDN博客

这篇关于LLM大语言模型(十二):关于ChatGLM3-6B不兼容Langchain 的Function Call的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935297

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选