百度飞桨七日深度学习手势识别

2024-04-25 06:32

本文主要是介绍百度飞桨七日深度学习手势识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

百度飞桨七日深度学习手势识别,paddlepaddle免费GPU算力,以及很好的封装,对初学者灰常友好~~~~。

下面是其中的手势识别作业,采用LeNet网络,初步感受了调参的魅力(雾😄),激发了学习理论的决心。

# 查看当前挂载的数据集目录, 该目录下的变更重启环境后会自动还原
# View dataset directory. This directory will be recovered automatically after resetting environment. 
!ls /home/aistudio/data
# 查看工作区文件, 该目录下的变更将会持久保存. 请及时清理不必要的文件, 避免加载过慢.
# View personal work directory. All changes under this directory will be kept even after reset. Please clean unnecessary files in time to speed up environment loading.
!ls /home/aistudio/work

!cd /home/aistudio/data/data23668 && unzip -qo Dataset.zip
!cd /home/aistudio/data/data23668/Dataset && rm -f */.DS_Store # 删除无关文件 
import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear

# 生成图像列表
data_path = '/home/aistudio/data/data23668/Dataset'
character_folders = os.listdir(data_path)
# print(character_folders)
if(os.path.exists('./train_data.list')):os.remove('./train_data.list')
if(os.path.exists('./test_data.list')):os.remove('./test_data.list')for character_folder in character_folders:with open('./train_data.list', 'a') as f_train:with open('./test_data.list', 'a') as f_test:if character_folder == '.DS_Store':continuecharacter_imgs = os.listdir(os.path.join(data_path,character_folder))count = 0 for img in character_imgs:if img =='.DS_Store':continueif count%10 == 0:f_test.write(os.path.join(data_path,character_folder,img) + '\t' + character_folder + '\n')else:f_train.write(os.path.join(data_path,character_folder,img) + '\t' + character_folder + '\n')count +=1
print('列表已生成')
# 定义训练集和测试集的reader
def data_mapper(sample):img, label = sampleimg = Image.open(img)img = img.resize((100, 100), Image.ANTIALIAS)img = np.array(img).astype('float32')img = img.transpose((2, 0, 1))img = img/255.0return img, labeldef data_reader(data_list_path):def reader():with open(data_list_path, 'r') as f:lines = f.readlines()for line in lines:img, label = line.split('\t')yield img, int(label)return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)
# 用于训练的数据提供器
train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256), batch_size=32)
# 用于测试的数据提供器
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32) 
#定义LeNet网络
class LeNet(fluid.dygraph.Layer):def __init__(self, training= True):super(LeNet, self).__init__()self.conv1 = Conv2D(num_channels=3, num_filters=32, filter_size=3, act='relu')self.pool1 = Pool2D(pool_size=2, pool_stride=2)self.conv2 = Conv2D(num_channels=32, num_filters=32, filter_size=3, act='relu')self.pool2 = Pool2D(pool_size=2, pool_stride=2)self.conv3 = Conv2D(num_channels=32, num_filters=64, filter_size=3, act='relu')self.pool3 = Pool2D(pool_size=2, pool_stride=2)#self.conv4 = Conv2D(num_channels=32, num_filters=64, filter_size=3, act='relu')#self.pool4 = Pool2D(pool_size=2, pool_stride=2)self.fc1 = Linear(input_dim=6400, output_dim=4096, act='relu')self.drop_ratiol = 0.5 if training else 0.0self.fc2 = Linear(input_dim=4096, output_dim=10)def forward(self, inputs):conv1 = self.conv1(inputs)  # 32 32 98 98pool1 = self.pool1(conv1)  # 32 32 49 49conv2 = self.conv2(pool1)  # 32 32 47 47pool2 = self.pool2(conv2)  # 32 32 23 23conv3 = self.conv3(pool2)  # 32 64 21 21pool3 = self.pool3(conv3)  # 32 64 10 10#conv4 = self.conv4(pool3)  # 32 64 21 21#pool4 = self.pool4(conv4)  # 32 64 10 10rs_1 = fluid.layers.reshape(pool3, [pool3.shape[0], -1])fc1 = self.fc1(rs_1)drop1 = fluid.layers.dropout(fc1, self.drop_ratiol)y = self.fc2(drop1)return y
```python#用动态图进行训练
with fluid.dygraph.guard():model=MyDNN() #模型实例化model.train() #训练模式opt=fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())#优化器选用SGD随机梯度下降,学习率为0.001.epochs_num=20 #迭代次数for pass_num in range(epochs_num):for batch_id,data in enumerate(train_reader()):images=np.array([x[0].reshape(3,100,100) for x in data],np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]# print(images.shape)image=fluid.dygraph.to_variable(images)label=fluid.dygraph.to_variable(labels)predict=model(image)#预测# print(predict)loss=fluid.layers.cross_entropy(predict,label)avg_loss=fluid.layers.mean(loss)#获取loss值acc=fluid.layers.accuracy(predict,label)#计算精度if batch_id!=0 and batch_id%50==0:print("train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num,batch_id,avg_loss.numpy(),acc.numpy()))avg_loss.backward()opt.minimize(avg_loss)model.clear_gradients()fluid.save_dygraph(model.state_dict(),'MyDNN')#保存模型
#模型校验
with fluid.dygraph.guard():accs = []model_dict, _ = fluid.load_dygraph('MyDNN')model = MyDNN()model.load_dict(model_dict) #加载模型参数model.eval() #训练模式for batch_id,data in enumerate(test_reader()):#测试集images=np.array([x[0].reshape(3,100,100) for x in data],np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]image=fluid.dygraph.to_variable(images)label=fluid.dygraph.to_variable(labels)predict=model(image)       acc=fluid.layers.accuracy(predict,label)accs.append(acc.numpy()[0])avg_acc = np.mean(accs)print(avg_acc)
#读取预测图像,进行预测def load_image(path):img = Image.open(path)img = img.resize((100, 100), Image.ANTIALIAS)img = np.array(img).astype('float32')img = img.transpose((2, 0, 1))img = img/255.0print(img.shape)return img#构建预测动态图过程
with fluid.dygraph.guard():infer_path = '手势.JPG'model=MyDNN()#模型实例化model_dict,_=fluid.load_dygraph('MyDNN')model.load_dict(model_dict)#加载模型参数model.eval()#评估模式infer_img = load_image(infer_path)infer_img=np.array(infer_img).astype('float32')infer_img=infer_img[np.newaxis,:, : ,:]infer_img = fluid.dygraph.to_variable(infer_img)result=model(infer_img)display(Image.open('手势.JPG'))print(np.argmax(result.numpy()))

这篇关于百度飞桨七日深度学习手势识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933921

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识