OpenCompass 大模型评测实战——笔记

2024-04-25 00:20

本文主要是介绍OpenCompass 大模型评测实战——笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCompass 大模型评测实战——笔记

  • 一、评测
    • 1.1、为什么要做评测
    • 1.2、如何通过能力评测促进模型发展
      • 1.2.1、面向未来拓展能力维度
      • 1.2.2、扎根通用能力
      • 1.2.3、高质量
      • 1.2.4、性能评测
    • 1.3、评测的挑战
      • 1.3.1、全面性
      • 1.3.2、评测成本
      • 1.3.3、数据污染
      • 1.3.4、鲁棒性
  • 二、OpenCompass怎么评测
    • 2.1、模型分类
    • 2.2、客观与主观评测
    • 2.3、提示词工程
    • 2.4、长文本评测

一、评测

1.1、为什么要做评测

因为通过评测,可以更好地发现大模型的问题。现在大模型在各个领域都有应用,那显然,也需要多维度的评测体系对其检测,发现哪个维度强,哪个维度弱,然后对于弱的维度,再进行针对性地提高。

这就像学习一样,如果没有平常的考试,你是不会确定自己到底学的怎么样,哪些知识点是薄弱环节需要重点提高。

1.2、如何通过能力评测促进模型发展

1.2.1、面向未来拓展能力维度

评测体系需增加新能力维度如数学、复杂推理、逻辑推理、代码和智能体等,以全面评估模型性能。

1.2.2、扎根通用能力

聚焦垂直行业在医疗、金融、法律等专业领域,评测需结合行业知识和规范,以评估模型的行业适用性。

1.2.3、高质量

中文基准针对中文场景,需要开发能准确评估其能力的中文评测基准,促进中文社区的大模型发展。

1.2.4、性能评测

反哺能力迭代通过深入分析评测性能,探索模型能力形成机制,发现模型不足,研究针对性提升策略。

1.3、评测的挑战

1.3.1、全面性

现在大模型应用场景千变万化,几乎各行各业都能看到它的影子,同时,模型能力演进迅速,在这样的条件下,如何设计和构造可扩展的能力维度体系,难度还是很大的。

1.3.2、评测成本

在客观评测方面,比如评测数十万道题,那是需要大量算力资源。

在主观评测方面,有时候需要调用 api 来评测,比如调用 GPT-4 作为法官来评测哪个模型好,那这也是需要成本的。

基于人工打分的主观评测成本不用说,那就更高昂了。

1.3.3、数据污染

海量语料不可避免带来评测集污染,比如有的模型,它是在测试集上做的训练,这就会导致后面测试分数虚高,但他们也不公布自己训练的数据集,所以别人就不知道,或者测试集和训练集有大量重叠部分,也相当于作弊或者自欺欺人,所以亟需可靠的数据污染检测技术,那如何设计可动态更新的高质量评测基准,也是个问题。

1.3.4、鲁棒性

某些大模型对提示词十分敏感,换了一套问法可能答案就不正确了,又或者是多次采样情况下模型性能不稳定,那这也是评测需要解决的问题。

二、OpenCompass怎么评测

2.1、模型分类

对于模型评测,不可能使用一套标准对所有模型进行评测,所以会将模型先分个类。

司南 评测体系 总共将模型分为四大类,包括:

  • 基座模型。一开始的只经过海量数据无监督训练的模型。
  • 对话模型。包括经过指令数据有监督微调 ( SFT ) 和 人类偏好对其 ( RLHF ) 的模型。
  • 公开权重的开源模型。这类模型使用GPU/推理加速卡进行本地推理。
  • API 模型。就是使用者发送网络请求然后获取回复。

2.2、客观与主观评测

在这里插入图片描述

2.3、提示词工程

既然要评测,那就是要尽可能在一个相对准备充足的条件下对模型进行评测,但很多时候,因为提问者的问题提问的不够清楚,导致模型的回答也相对较差,那这就体现不出模型的能力,所以肯定是要在能体现模型能力的基础上再进行评测。比如:

  • 明确性
    不好的示例 : 请写一篇关于人工智能的全面介绍( 目标过于宽泛,缺乏具体要求和细节 )
    好的示例 : 请为我写一篇关于人工智能的科普文章,要求涵盖其发展历程、应用领域以及对社会的影响。( 目标明确,完整覆盖了主题内容 )
  • 概念无歧义
    不好的示例: 我想了解苹果。( 问题内容存在歧义 )
    好的示例: 请描述苹果公司的创始人史蒂夫·乔布斯的职业生涯( 给出了准确的概念
  • 逐步引导
    不好的示例 : 告诉我怎么做蛋糕。( 缺少指引)
    好的示例: 首先,我需要准备哪些材料来制作巧克力蛋糕? 接下来,烘焙过程中有哪些关键步骤?( 给出了思路引导 )
  • 具体描述
    不好的示例 : 告诉我一个笑话。( 缺少具体细节 )
    好的示例: 请创作一个关于时间旅行的幽默故事( 给出了具体的问题描述和范围 )
  • 迭代反馈
    不好的示例 : 这个回答不够详细。( 缺少清晰的反馈 )
    好的示例:你能更详细地解释人工智能在医疗诊断中的应用吗?( 明确清晰的修改建议 )

还有比如 小样本学习思维链技术 都可以帮助题目变得更好。

2.4、长文本评测

在这里插入图片描述

在上面的例子中,在一个很长的文档,比如在红楼梦当中插入一句话 “小明在上海人工智能实验室学习”,这句话和红楼梦没有半点关系,然后交给模型训练,那如果我们后续提问,比如 “小明在哪实习”,模型能回答 “上海人工智能实验室” 这种回答,就代表模型真的能记住这条信息并且能够理解这句话,能够做到 “大海捞针”。

这篇关于OpenCompass 大模型评测实战——笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933246

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选