模型训练时报错Failed to allocate 12192768 bytes in function ‘cv::OutOfMemoryError‘

本文主要是介绍模型训练时报错Failed to allocate 12192768 bytes in function ‘cv::OutOfMemoryError‘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

报错信息:

查找网上解决方法:

改进思路:

改进方法:


报错信息:

D:\Programs\miniconda3\envs\python311\python.exe D:\python\project\VisDrone2019-DET-MOT\train.py 
Ultralytics YOLOv8.1.9 🚀 Python-3.11.7 torch-2.2.0 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB)
engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=D:\python\project\VisDrone2019-DET-MOT\class.yaml, epochs=100, time=None, patience=50, batch=2, imgsz=900, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=train4, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train4
Overriding model.yaml nc=80 with nc=12from  n    params  module                                       arguments                     0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 22        [15, 18, 21]  1    753652  ultralytics.nn.modules.head.Detect           [12, [64, 128, 256]]          
Model summary: 225 layers, 3013188 parameters, 3013172 gradients, 8.2 GFLOPsTransferred 319/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
WARNING ⚠️ imgsz=[900] must be multiple of max stride 32, updating to [928]
train: Scanning E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\labels... 30669 images, 0 backgrounds, 0 corrupt: 100%|██████████| 30669/30669 [00:35<00:00, 875.04it/s] 
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\0000137_02220_d_0000163.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\0000140_00118_d_0000002.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999945_00000_d_0000114.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999987_00000_d_0000049.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999998_00219_d_0000175.jpg: 1 duplicate labels removed
train: New cache created: E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\labels.cache
val: Scanning E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\val\labels... 3394 images, 1 backgrounds, 0 corrupt: 100%|██████████| 3394/3394 [00:02<00:00, 1257.53it/s]
val: New cache created: E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\val\labels.cache
Plotting labels to runs\detect\train4\labels.jpg... 0%|          | 0/15335 [00:00<?, ?it/s]optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... 
optimizer: SGD(lr=0.01, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 928 train, 928 val
Using 8 dataloader workers
Logging results to runs\detect\train4
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/100      2.56G        nan        nan        nan         77        928: 100%|██████████| 15335/15335 [1:25:43<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.67it/s]all       3394     158168    0.00413   1.32e-05    0.00208   0.000415Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/100      3.19G        nan        nan        nan         44        928: 100%|██████████| 15335/15335 [1:25:33<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00401   1.32e-05    0.00203   0.000406Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/100       2.1G        nan        nan        nan        134        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00154   1.14e-05   0.000779   7.79e-05Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/100      3.26G        nan        nan        nan         99        928: 100%|██████████| 15335/15335 [1:26:01<00:00,  2.97it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.55it/s]all       3394     158168    0.00409   1.32e-05    0.00206   0.000412Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/100      3.16G        nan        nan        nan         90        928: 100%|██████████| 15335/15335 [1:25:27<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/100      2.25G        nan        nan        nan         85        928: 100%|██████████| 15335/15335 [1:25:42<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168     0.0043   1.32e-05    0.00216   0.000343Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/100      3.53G        nan        nan        nan         39        928: 100%|██████████| 15335/15335 [1:25:29<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.68it/s]all       3394     158168    0.00401   1.32e-05    0.00202   0.000322Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/100      2.61G        nan        nan        nan         28        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168     0.0016   1.14e-05    0.00081   0.000162Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/100       3.4G        nan        nan        nan        109        928: 100%|██████████| 15335/15335 [1:25:51<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168    0.00419   1.32e-05    0.00211   0.000338Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/100      2.79G        nan        nan        nan         35        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168     0.0016   1.14e-05    0.00081    8.1e-050%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size11/100      3.68G        nan        nan        nan        193        928: 100%|██████████| 15335/15335 [1:25:28<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.65it/s]all       3394     158168    0.00163   1.14e-05   0.000826   8.26e-050%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size12/100      3.38G        nan        nan        nan         41        928: 100%|██████████| 15335/15335 [1:25:48<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.55it/s]all       3394     158168    0.00419   1.32e-05    0.00211   0.0003380%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size13/100      3.09G        nan        nan        nan         72        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.71it/s]all       3394     158168    0.00427   1.32e-05    0.00215   0.000346Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size14/100      2.11G        nan        nan        nan        135        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size15/100       3.5G        nan        nan        nan         35        928: 100%|██████████| 15335/15335 [1:26:21<00:00,  2.96it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.00033Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size16/100       3.1G        nan        nan        nan         29        928: 100%|██████████| 15335/15335 [1:25:27<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00405   1.32e-05    0.00204   0.000323Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size17/100      2.52G        nan        nan        nan          9        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.71it/s]all       3394     158168    0.00405   1.32e-05    0.00204   0.0003230%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size18/100      3.05G        nan        nan        nan         46        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size19/100      2.82G        nan        nan        nan         74        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00427   1.32e-05    0.00215   0.000346Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size20/100      2.88G        nan        nan        nan        108        928: 100%|██████████| 15335/15335 [1:25:24<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00423   1.32e-05    0.00213   0.0003390%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size21/100      3.52G        nan        nan        nan        102        928:  84%|████████▎ | 12806/15335 [1:11:20<14:05,  2.99it/s]
Traceback (most recent call last):File "D:\python\project\VisDrone2019-DET-MOT\train.py", line 20, in <module>results = model.train(data=r"D:\python\project\VisDrone2019-DET-MOT\class.yaml", imgsz=900, epochs=100, batch=2,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\model.py", line 601, in trainself.trainer.train()File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\trainer.py", line 208, in trainself._do_train(world_size)File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\trainer.py", line 358, in _do_trainfor i, batch in pbar:File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\tqdm\std.py", line 1182, in __iter__for obj in iterable:File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\build.py", line 49, in __iter__yield next(self.iterator)^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 631, in __next__data = self._next_data()^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 1346, in _next_datareturn self._process_data(data)^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 1372, in _process_datadata.reraise()File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\_utils.py", line 722, in reraiseraise exception
cv2.error: Caught error in DataLoader worker process 2.
Original Traceback (most recent call last):File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\worker.py", line 308, in _worker_loopdata = fetcher.fetch(index)^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in fetchdata = [self.dataset[idx] for idx in possibly_batched_index]^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in <listcomp>data = [self.dataset[idx] for idx in possibly_batched_index]~~~~~~~~~~~~^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 251, in __getitem__return self.transforms(self.get_image_and_label(index))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 257, in get_image_and_labellabel["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 157, in load_imageim = cv2.imread(f)  # BGR^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\utils\patches.py", line 26, in imreadreturn cv2.imdecode(np.fromfile(filename, np.uint8), flags)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
cv2.error: OpenCV(4.9.0) D:\a\opencv-python\opencv-python\opencv\modules\core\src\alloc.cpp:73: error: (-4:Insufficient memory) Failed to allocate 12192768 bytes in function 'cv::OutOfMemoryError'Process finished with exit code 1

查找网上解决方法:

改进思路:

报错OutOfMemoryError是说内存不足,上述方法本质上就是将图片缩小

改进方法:

模型训练时把epochs改小,这里下调到20,将图片大小imgsz改小

if __name__ == '__main__':os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"# 加载模型# model = YOLO("yolov8n.yaml")  # 从头开始构建新模型model = YOLO("yolov8n.pt")  # 加载预训练模型(推荐用于训练)# Use the modelresults = model.train(data="class.yaml", imgsz=1120, epochs=20, batch=4, device=0)  # 训练模型

这篇关于模型训练时报错Failed to allocate 12192768 bytes in function ‘cv::OutOfMemoryError‘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932092

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU