EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】

本文主要是介绍EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

EPSANet:一种高效的金字塔切分注意力网络

一、引言

在深度学习领域,注意力机制已经成为提升卷积神经网络性能的关键技术。其中,一种新型网络结构——EPSANet,通过引入金字塔切分注意力(Pyramid Split Attention, PSA)模块,为注意力机制的研究和应用提供了新的思路。EPSANet不仅在图像识别任务中表现出色,还在计算参数量上实现了高效性。
在这里插入图片描述

二、PSA模块的设计

PSA模块的核心思想在于利用多尺度的输入特征图,提取并整合不同尺度的空间信息,从而建立多尺度通道注意力间的长期依赖关系。具体设计包括以下几个关键步骤:

  1. 分组:将输入特征图按照通道数进行分组,以便在不同尺度上并行处理。
  2. 卷积核大小变化:针对不同尺度的分组,使用不同大小的卷积核进行卷积操作,以捕获不同尺度的空间信息。
  3. 特征图拼接:将不同尺度上的特征图进行拼接,以融合多尺度信息。
  4. SE模块提取通道加权值:通过SE(Squeeze-and-Excitation)模块学习每个通道的权重,实现对通道注意力的调整。在这里插入图片描述
    在这里插入图片描述

这种设计使得EPSANet能够以较低的模型复杂度学习注意力权重,并整合局部和全局注意力,建立长期的通道依赖关系。

三、EPSANet的性能

EPSANet在多个数据集上表现出色,尤其是在图像识别任务中。与SENet-50相比,EPSANet在ImageNet数据集上的Top-1准确率提高了1.93%。此外,在MS-COCO数据集上使用Mask-RCNN时,EPSANet的目标检测box AP提高了2.7,实例分割的mask AP提高了1.7。这些结果充分证明了EPSANet在提升模型性能方面的有效性。
在这里插入图片描述

在这里插入图片描述

即插即用的设计,EPSA模块具有即插即用的特性,可以轻松添加到现有的骨干网络中,无需复杂的修改即可获得显著的性能提升。这种设计理念使得EPSANet能够方便地应用于各种计算机视觉任务,为实际应用提供了极大的便利。

四、相关代码(pytorch)

import torch
import torch.nn as nnclass SEWeightModule(nn.Module):def __init__(self, channels, reduction=16):super(SEWeightModule, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)self.relu = nn.ReLU(inplace=True)self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.avg_pool(x)out = self.fc1(out)out = self.relu(out)out = self.fc2(out)weight = self.sigmoid(out)return weightdef conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1):"""standard convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups, bias=False)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class PSAModule(nn.Module):def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]):super(PSAModule, self).__init__()self.conv_1 = conv(inplans, planes//4, kernel_size=conv_kernels[0], padding=conv_kernels[0]//2,stride=stride, groups=conv_groups[0])self.conv_2 = conv(inplans, planes//4, kernel_size=conv_kernels[1], padding=conv_kernels[1]//2,stride=stride, groups=conv_groups[1])self.conv_3 = conv(inplans, planes//4, kernel_size=conv_kernels[2], padding=conv_kernels[2]//2,stride=stride, groups=conv_groups[2])self.conv_4 = conv(inplans, planes//4, kernel_size=conv_kernels[3], padding=conv_kernels[3]//2,stride=stride, groups=conv_groups[3])self.se = SEWeightModule(planes // 4)self.split_channel = planes // 4self.softmax = nn.Softmax(dim=1)def forward(self, x):batch_size = x.shape[0]x1 = self.conv_1(x)x2 = self.conv_2(x)x3 = self.conv_3(x)x4 = self.conv_4(x)feats = torch.cat((x1, x2, x3, x4), dim=1)feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3])x1_se = self.se(x1)x2_se = self.se(x2)x3_se = self.se(x3)x4_se = self.se(x4)x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1)attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1)attention_vectors = self.softmax(attention_vectors)feats_weight = feats * attention_vectorsfor i in range(4):x_se_weight_fp = feats_weight[:, i, :, :]if i == 0:out = x_se_weight_fpelse:out = torch.cat((x_se_weight_fp, out), 1)return out# 测试PSA模块
if __name__ == '__main__':model = PSAModule(inplans=384, planes=384).cuda() # 创建测试模块input = torch.rand(3, 384, 64, 64).cuda()  # 创建随机输入数据output = model(input)  # 前向传播print(output.shape) 

五、结论

EPSANet作为一种高效的金字塔切分注意力网络,通过引入PSA模块,实现了对多尺度空间信息的有效处理和整合。其出色的性能和即插即用的设计使得EPSANet在深度学习领域具有广泛的应用前景。随着研究的深入,我们期待看到更多基于EPSANet的应用和改进,为计算机视觉领域带来更多的创新和突破。

参考资料

论文:EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network

版权声明

本博客内容仅供学习交流,转载请注明出处。

这篇关于EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930801

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R