EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】

本文主要是介绍EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

EPSANet:一种高效的金字塔切分注意力网络

一、引言

在深度学习领域,注意力机制已经成为提升卷积神经网络性能的关键技术。其中,一种新型网络结构——EPSANet,通过引入金字塔切分注意力(Pyramid Split Attention, PSA)模块,为注意力机制的研究和应用提供了新的思路。EPSANet不仅在图像识别任务中表现出色,还在计算参数量上实现了高效性。
在这里插入图片描述

二、PSA模块的设计

PSA模块的核心思想在于利用多尺度的输入特征图,提取并整合不同尺度的空间信息,从而建立多尺度通道注意力间的长期依赖关系。具体设计包括以下几个关键步骤:

  1. 分组:将输入特征图按照通道数进行分组,以便在不同尺度上并行处理。
  2. 卷积核大小变化:针对不同尺度的分组,使用不同大小的卷积核进行卷积操作,以捕获不同尺度的空间信息。
  3. 特征图拼接:将不同尺度上的特征图进行拼接,以融合多尺度信息。
  4. SE模块提取通道加权值:通过SE(Squeeze-and-Excitation)模块学习每个通道的权重,实现对通道注意力的调整。在这里插入图片描述
    在这里插入图片描述

这种设计使得EPSANet能够以较低的模型复杂度学习注意力权重,并整合局部和全局注意力,建立长期的通道依赖关系。

三、EPSANet的性能

EPSANet在多个数据集上表现出色,尤其是在图像识别任务中。与SENet-50相比,EPSANet在ImageNet数据集上的Top-1准确率提高了1.93%。此外,在MS-COCO数据集上使用Mask-RCNN时,EPSANet的目标检测box AP提高了2.7,实例分割的mask AP提高了1.7。这些结果充分证明了EPSANet在提升模型性能方面的有效性。
在这里插入图片描述

在这里插入图片描述

即插即用的设计,EPSA模块具有即插即用的特性,可以轻松添加到现有的骨干网络中,无需复杂的修改即可获得显著的性能提升。这种设计理念使得EPSANet能够方便地应用于各种计算机视觉任务,为实际应用提供了极大的便利。

四、相关代码(pytorch)

import torch
import torch.nn as nnclass SEWeightModule(nn.Module):def __init__(self, channels, reduction=16):super(SEWeightModule, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)self.relu = nn.ReLU(inplace=True)self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.avg_pool(x)out = self.fc1(out)out = self.relu(out)out = self.fc2(out)weight = self.sigmoid(out)return weightdef conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1):"""standard convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups, bias=False)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class PSAModule(nn.Module):def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]):super(PSAModule, self).__init__()self.conv_1 = conv(inplans, planes//4, kernel_size=conv_kernels[0], padding=conv_kernels[0]//2,stride=stride, groups=conv_groups[0])self.conv_2 = conv(inplans, planes//4, kernel_size=conv_kernels[1], padding=conv_kernels[1]//2,stride=stride, groups=conv_groups[1])self.conv_3 = conv(inplans, planes//4, kernel_size=conv_kernels[2], padding=conv_kernels[2]//2,stride=stride, groups=conv_groups[2])self.conv_4 = conv(inplans, planes//4, kernel_size=conv_kernels[3], padding=conv_kernels[3]//2,stride=stride, groups=conv_groups[3])self.se = SEWeightModule(planes // 4)self.split_channel = planes // 4self.softmax = nn.Softmax(dim=1)def forward(self, x):batch_size = x.shape[0]x1 = self.conv_1(x)x2 = self.conv_2(x)x3 = self.conv_3(x)x4 = self.conv_4(x)feats = torch.cat((x1, x2, x3, x4), dim=1)feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3])x1_se = self.se(x1)x2_se = self.se(x2)x3_se = self.se(x3)x4_se = self.se(x4)x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1)attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1)attention_vectors = self.softmax(attention_vectors)feats_weight = feats * attention_vectorsfor i in range(4):x_se_weight_fp = feats_weight[:, i, :, :]if i == 0:out = x_se_weight_fpelse:out = torch.cat((x_se_weight_fp, out), 1)return out# 测试PSA模块
if __name__ == '__main__':model = PSAModule(inplans=384, planes=384).cuda() # 创建测试模块input = torch.rand(3, 384, 64, 64).cuda()  # 创建随机输入数据output = model(input)  # 前向传播print(output.shape) 

五、结论

EPSANet作为一种高效的金字塔切分注意力网络,通过引入PSA模块,实现了对多尺度空间信息的有效处理和整合。其出色的性能和即插即用的设计使得EPSANet在深度学习领域具有广泛的应用前景。随着研究的深入,我们期待看到更多基于EPSANet的应用和改进,为计算机视觉领域带来更多的创新和突破。

参考资料

论文:EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network

版权声明

本博客内容仅供学习交流,转载请注明出处。

这篇关于EPSANet:金字塔切分注意力网络,有效的即插即用炼丹模块【原理讲解及代码!!!】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930801

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例