西瓜书学习——对数几率回归

2024-04-24 04:36

本文主要是介绍西瓜书学习——对数几率回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对数几率回归(Logistic Regression)是一种广泛应用于分类问题的统计方法,特别是用于二分类问题。尽管它的名字中包含“回归”,但它实际上是一种分类算法,用于估计一个样本属于某个类别的概率。

对数几率回归的核心是使用逻辑函数(Logistic Function),也称为 sigmoid 函数,将线性回归的输出映射到 0 和 1 之间的概率。sigmoid 函数定义为:

S ( x ) = 1 1 + e − x S(x) = \frac{1}{1 + e^{-x}} S(x)=1+ex1

在这个函数中, x x x 是线性回归模型的输出,即 w T x + b \mathbf{w}^T \mathbf{x} + b wTx+b,其中 w \mathbf{w} w 是权重向量, x \mathbf{x} x 是特征向量, b b b 是偏置项。

对数几率回归模型的输出可以解释为样本属于正类(通常标记为1)的概率:

P ( y = 1 ∣ x ) = 1 1 + e − ( w T x + b ) P(y=1 | \mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}} P(y=1∣x)=1+e(wTx+b)1

对于二分类问题,负类(通常标记为0)的概率可以通过 1 减去正类的概率得到:

P ( y = 0 ∣ x ) = 1 − P ( y = 1 ∣ x ) P(y=0 | \mathbf{x}) = 1 - P(y=1 | \mathbf{x}) P(y=0∣x)=1P(y=1∣x)

在训练过程中,对数几率回归模型通过最大化对数似然函数来估计参数 w \mathbf{w} w b b b。对数似然函数定义为:

L ( w , b ) = ∑ i = 1 N y i log ⁡ ( P ( y i = 1 ∣ x i ) ) + ( 1 − y i ) log ⁡ ( P ( y i = 0 ∣ x i ) ) L(\mathbf{w}, b) = \sum_{i=1}^{N} y_i \log(P(y_i=1 | \mathbf{x}_i)) + (1 - y_i) \log(P(y_i=0 | \mathbf{x}_i)) L(w,b)=i=1Nyilog(P(yi=1∣xi))+(1yi)log(P(yi=0∣xi))

其中, N N N 是样本数量, y i y_i yi 是第 i i i 个样本的标签(0或1), x i \mathbf{x}_i xi是第 i i i 个样本的特征向量。

对数几率回归模型通常使用梯度下降法或者其变体(如随机梯度下降法、批量梯度下降法等)来求解最优参数。在实际应用中,对数几率回归因其模型简单、易于解释和实现而被广泛使用。

这篇关于西瓜书学习——对数几率回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930767

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件