Atlas Vector Search:借助语义搜索和 AI 针对任何类型的数据构建智能应用

本文主要是介绍Atlas Vector Search:借助语义搜索和 AI 针对任何类型的数据构建智能应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述

Atlas Vector Search已正式上线!

Vector Search(向量搜索)现在支持生产工作负载,开发者可以继续构建由语义搜索和生成式人工智能驱动的智能应用,同时通过 Search Node(搜索节点)优化资源消耗并提高性能。

这一刻终于到来:人工智能已触手可及。曾经,数据科学与机器学习是高深莫测的领域,仅为企业内部的专业人士所掌握;然而如今,这些技术的神秘面纱已被揭开,现已向世界各地的创造者敞开了大门。

但若想深入挖掘这些新兴工具的巨大潜能,开发者需要一个可信赖、可灵活组合、精巧高效的数据平台作为基础。同时,这些新能力的效果好坏,取决于它们能够获取的数据或“基本事实”的质量。

因此,我们为 MongoDB Atlas 开发者数据平台增加了一项新的功能,让开发者的数据释放出无限可能,助力 AI 应用的发展——MongoDB 隆重推出全新的 Vector Search 功能,它能够适应各种形式的数据需求,让我们的合作伙伴享受这些惊人新功能带来的好处。

向量搜索的原理和优势

Vector Search 是一种基于语义或数据含义,而不是基于数据本身来查询数据的功能。这种功能的实现原理是,把任何形式的数据转换成数字向量,再用高级算法进行相互比较。

第一步是获取源数据,可以是文本、音频、图像或视频数据源,并使用“编码模型”将其转换为“向量”或“嵌入”。得益于人工智能的最新进展,这些向量现在能够将低维数据投影到包含更多数据上下文的高维空间,从而更准确地理解数据的含义。

一旦数据转换成数字表示,就可以使用“近似最近邻”算法查找相似的值,这种算法可以让查询非常快速地找到具有相似向量的数据。用户可以使用自然语言进行查询,例如:“推荐一些悲伤的电影”,或“找一些类似……的图片”。这项功能解锁了全新的可能性。

在这里插入图片描述

点击观看这两支视频,帮助你更好地了解Vector Search:

向量搜索:数据查询的未来|语义搜索

3分钟了解MongoDB Atlas向量搜索

MongoDB Atlas平台已原生内置向量搜索!

MongoDB Atlas 已原生内置此功能,开发者无需复制和转换数据、无需学习新的技术栈和语法,也无需管理一整套新的基础设施。借助 MongoDB 的 Atlas Vector Search,开发者可以在一个经过实战考验的出色平台中利用这些强大的新功能,以前所未有的速度构建应用。

有效使用 AI 和 Vector Search 所面临的许多挑战,都源于保证应用数据安全所涉及到的复杂性。这些繁琐的任务会降低开发效率,并让应用的构建、调试和维护变得更加困难。MongoDB 消除了所有这些挑战,同时将 Vector Search 的强大能力整合到平台中,无论面对什么样的工作负载,该平台都能灵活地纵向和横向扩展,轻松应对。

最后,如果没有安全性和可用性的保证,这一切都毫无意义。MongoDB 致力于提供安全的数据管理解决方案,通过冗余和自动故障转移保证高可用性,让应用始终稳定运行。

MongoDB.local 伦敦见面会发布的新功能

在 .Local 伦敦见面会上,我们很高兴地宣布推出专门的Vector Search 聚合阶段,它可以通过 $vectorSearch 调用。这个新的聚合阶段引入了一些新概念,增加了新的能力,使得 Vector Search 比以往任何时候都更容易使用。

借助 $vectorSearch,开发者还可以通过 MQL 语法使用预过滤器(如 g t e 、 gte、 gteeq 等),以在遍历索引时过滤掉一些文档,从而获得一致的结果和更高性能。任何了解 MongoDB 的开发者都能够轻松使用此过滤功能!

最后,我们还介绍了在聚合阶段内部调整结果的两种方法,即“numCandidates”和“limit”参数。通过这些参数,开发者可以调整应该成为近似最近邻搜索候选者的文档数量,然后通过“limit”限制结果数量。

它如何与生态系统交互?

人工智能的发展日新月异,让人叹为观止,而开源社区的突飞猛进也令人赞叹不已。开源语言模型以及将它们集成到应用中的各种方法取得了巨大的进步。人工智能展现出了强大力量,因此,建立一个能够让开发者自由发挥的坚实抽象也变得前所未有地重要。基于这样的考虑,我们非常激动地告诉大家,LangChain 和 LlamaIndex 支持我们的多种功能,包括 Vector Search、聊天日志 (Chat Logging) 和文档索引等。我们正在快速推进,并将继续为主要提供商发布新功能。

在这里插入图片描述

总结

一切才刚刚开始,MongoDB 致力于提供优秀的开发者数据平台,助力开发者打造新一代 AI 赋能的应用。我们还会不断研究和支持更多的框架和插件架构。但始终不变的是,这一切的核心都是开发者。我们将与社区交流,找到最合适的服务方式,让开发者在每一步都感到满意。放手去创造吧!

MongoDB Atlas

MongoDB Atlas 是 MongoDB 公司提供的 MongoDB 云服务,由 MongoDB 数据库的开发团队构建和运维,可以在AWS、Microsoft Azure、Google Cloud Platform 云平台上轻松部署、运营和扩展。MongoDB Atlas 内建了 MongoDB 安全和运维最佳实践,可自动完成基础设施的部署、数据库的构建、高可用部署、数据的全球分发、备份等即费时又需要大量经验运维工作。让您通过简单的界面和 API 就可以完成这些工作,由此您可以将更多宝贵的时间花在构建您的应用上。


👉点击访问 MongoDB中文官网
👉立即免费试用 MongoDB Atlas
☎️需要支持?欢迎联系我们:400-8662988
✅欢迎关注MongoDB微信订阅号(MongoDB-China),及时获取最新资讯。

这篇关于Atlas Vector Search:借助语义搜索和 AI 针对任何类型的数据构建智能应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930374

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应