StarRocks 实战指南:100+ 大型企业背后的最佳实践经验

2024-04-23 18:04

本文主要是介绍StarRocks 实战指南:100+ 大型企业背后的最佳实践经验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编者荐语:

本文由镜舟科技的 DBA 团队负责人景丹撰写。在过去三年中,他服务了上百家 StarRocks 大型企业用户,并总结了最佳使用方法。文章涵盖了部署、建模、导入、查询和监控五个模块。

PART 01 部署

容量规划

【建议】参考 StarRocks 集群配置推荐 做容量规划

基础环境配置

【必须】参考检查环境配置 | StarRocks,尤其关注 swap 关闭、overcommit 设置为1、ulimit 配置合理

机器配置

  • FE 节点

    • 【建议】 8C32GB

    • 【必须】数据盘>=200GB,建议 SSD

  • BE 节点

    • 【建议】CPU:内存比,1:4,生产最小配置必须是 8C32GB+
    • 【建议】单节点磁盘容量建议 10TB,数据盘建议最大单盘 2TB,建议 SSD 或者 NVME(如果是 HDD,建议吞吐>150MB/s,IOPS>500)
    • 【建议】集群中节点同构(机器规格一样,避免木桶效应)

部署方案

  • 【必须】生产环境必须最小集群规模 3FE+3BE(建议 FE 和 BE 独立部署),如果混合部署, 必须配置 be.conf 中的 mem_limit 为减去其他服务后剩余内存量,例如机器内存 40G,上面已经部署了 FE,理论上限会用 8G,那么配置下mem_limit=34G (40-8-2),2G 作为系统预留

  • 【必须】生产必须 FE 高可用部署 ,1 Leader + 2 Follower,如果需要提高读并发,可以扩容 Observer 节点

  • 【必须】生产必须使用负载均衡器连接集群进行读写,一般常用 Nginx、Haproxy、F5 等

PART 02 建模

建表规范

  • 仅支持 UTF8 编码

  • 不支持修改表中的列名(即将支持)

  • VARCHAR 最大长度 1048576

  • KEY 列不能使用 FLOAT、DOUBLE 类型

  • 数据目录名、数据库名、表名、视图名、用户名、角色名 大小写敏感 ,列名和分区名 大小写不敏感

  • 主键模型中,主键长度不超过 128 字节

模型选择

  • 如果想要保留明细,建议使用明细模型

  • 如果有明确主键,主键非空,写少读多,非主键列要利用索引,建议使用主键模型

  • 如果有明确主键,主键可能为空,写多读少,建议使用更新模型

  • 如果只想保留聚合数据,建议使用聚合模型

排序列和前缀索引选择

DUPLICATE KEY、AGGREGATE KEY、UNIQUE KEY 中指定的列,StarRocks 3.0 以前版本,主键模型中排序列通过 PRIMARY KEY 指定,StarRocks 3.0 以后版本,主键模型中排序列通过 ORDER BY 指定。

前缀索引是在排序列基础上引入的稀疏索引,能进一步提升查询效率。为了实现最佳性能,前缀索引将全部加载在内存中。在使用前缀索引时需注意:

  • 经常作为查询条件的列,建议选为排序列,例如经常用 user_id 过滤,where user_id=234,可以把 user_id 放在第一列

  • 排序列建议选择 3-5 列,过多会增大排序开销,降低导入效率

  • 前缀索引不超过 36 字节,不能超过 3 列,遇到 VARCHAR 会截断,前缀索引中不能包含 FLOAT 或 DOUBLE 类型的列

因此可以结合实际业务查询场景,在确定 Key 列以及字段顺序时,要充分考虑前缀索引带来的优势。尽可能将经常需要查询的 Key 列字段,放置在前面,字段数据类型尽量选择 date 日期类型或者 int 等整数类型。

举例:

CREATE TABLE site_access
(site_id BIGINT DEFAULT '10',city_code INT,site_name VARCHAR(50),pv BIGINT DEFAULT '0'
)
DUPLICATE KEY(site_id,city_code,site_name)
DISTRIBUTED BY HASH(site_id);

在 site_access 表中,前缀索引为 site_id( 8 Bytes ) + city_code( 4 Bytes ) + site_name(前 24 Bytes)

  • 如果查询条件只包含 site_idcity_code 两列,如下所示,则可以大幅减少查询过程中需要扫描的数据行:

select sum(pv) from site_access where site_id = 123 and city_code = 2;

  • 如果查询条件只包含 site_id 一列,如下所示,可以定位到只包含 site_id 的数据行:

select sum(pv) from site_access where site_id = 123;

  • 如果查询条件只包含 city_code 一列,如下所示,则需要扫描所有数据行,排序效果大打折扣:

select sum(pv) from site_access where city_code = 2;

  • 如果 site_id 和 city_code 在联合查询和单独 city_code 的查询占比不相上下,可以考虑创建同步物化视图调整列顺序来达到查询性能提升。在这种情况下,我们将物化视图中的 city_code 列放置在第一列。
create materialized view site_access_city_code_mv as
selectcity_code,site_id,site_name,pv
fromsite_access;

Bad case

CREATE TABLE site_access_bad
(site_name VARCHAR(20),site_id BIGINT DEFAULT '10',city_code INT,pv BIGINT DEFAULT '0'
)
PRIMARY KEY(site_id)
DISTRIBUTED BY HASH(site_id)
ORDER BY(site_id,city_code);

分区选择

  • 【建议】值不会变化的时间列经常用于 WHERE 过滤,使用该列创建分区

  • 【建议】有数据淘汰需求的场景建议选择动态分区

  • 【必须】数据更新有明显的冷热特征的,必须创建分区,例如经常更新最近一周的数据,可以按天分区

  • 【必须】单个分区数据量必须不超过 100GB

  • 【必须】超过 50G 或者 5KW 的表建议创建分区

  • 【建议】按需创建分区,不要提前创建大量空分区,避免元数据太多占用 FE 的内存

  • 当前支持时间类型(Range 分区、表达式分区)、字符串(List 分区)、数字(Range 分区、List 分区)

  • 默认最大支持 1024 个分区,可以通过参数调整,不过一般情况下不需要调整

分桶选择

  1. 生产必须使用 3 副本

  2. 分桶个数判断

  • 【必须】单个桶按照 1GB 预估,原始数据按照 10GB(导入 StarRocks 后,压缩比 7:1~10:1)预估。

  • 当按照以上策略估算出来的分桶个数小于 BE 个数的时候,最终分桶个数以 BE 个数为准,例如 6 个 BE 节点,按照 1GB 每个桶预估分桶个数为 1,最终分桶个数取 6

  • 【必须】非分区表不要使用动态分桶,按照实际数据量估算分桶个数

  • 【必须】如果分区表的各个分区的数据差异很大,建议不要使用动态分桶策略

  1. 分桶裁剪和数据倾斜如何抉择?
  • 【建议】如果分桶列是 WHERE 中经常用到的列,且分桶列的重复度比较低(例如用户 ID、事物 ID 等),则可以利用该列作为分桶列

  • 【建议】当查询条件包含 city_id 和 site_id 时,若 city_id 的取值仅有几十个,简单地只使用 city_id 作为分桶可能导致某些桶数据量过大,引发数据倾斜问题。在这种情况下,可以考虑将 city_id 和 site_id 联合作为分桶字段。不过这样做的缺点是当查询条件中只包含 city_id 时,无法利用分桶进行数据裁剪。

  • 【建议】如果没有合适的字段作为分桶字段打散数据,可以利用 Random 分桶,不过这样的话没办法利用分桶裁剪的属性

  • 【必须】2 个或多个超过 KW 行以上的表 Join,建议使用 Colocate,具体参考 Colocate Join | StarRocks

字段类型

【建议】不要使用 null 属性

【必须】确保时间类型和数字类型的列选择正确的数据类型。若使用不正确的数据类型,计算开销会大大增加。例如,时间类型的数据如 “2024-01-01 00:00:00” 不应该使用 VARCHAR 存储,这样做将无法利用 StarRocks 内部的 Zonemap 索引,也无法加速过滤操作。

索引选择

Bitmap 索引

  • 适合基数在 10000-100000 左右的列

  • 适合等值条件 (=) 查询或 [NOT] IN 范围查询的列

  • 不支持为 FLOAT、DOUBLE、BOOLEAN 和 DECIMAL 类型的列创建 Bitmap 索引

  • 城市、性别这些基数在 255 以下的列不需要创建 Bitmap 索引,因为 StarRocks 内部有低基数字典,会针对这些 case 自动创建低基数字典用于加速

  • 明细模型和主键模型,所有列可以创建 Bitmap 索引;聚合模型和更新模型,只有 Key 列支持创建 Bitmap 索引

Bloom filter 索引

  • 适合基数在 100000+ 的列,列的重复度很低
  • 适合 in= 过滤条件的查询
  • 不支持为 TINYINT、FLOAT、DOUBLE 和 DECIMAL 类型的列创建 Bloom filter 索引
  • 主键模型和明细模型中所有列都可以创建 Bloom filter 索引;聚合模型和更新模型中,只有维度列(即 Key 列)支持创建 Bloom filter 索引

PART 03 导入

使用建议

  • 【必须】生产禁止使用 insert into values() 导数据

  • 【必须】建议导入批次间隔 5s+,也就是攒批写入,尤其是实时场景

  • 【建议】主键模型更新场景,建议开启索引落盘,磁盘强制 SSD、NVME 或者更高性能的磁盘

  • 【建议】比较多 ETL(insert into select)的场景,建议开启 Spill 落盘功能,避免内存超过限制

数据生命周期

  • 【建议】使用 truncate 删除数据,不要使用 delete

  • 【必须】完整的 update 语法只能用于 3.0 版本以后的主键模型,禁止高并发 update,建议每次 update 操作需要间隔分钟以上

  • 【必须】如果使用 delete 删除数据,需要带上 where 条件,并且禁止并发执行 delete,例如要删除 id=1,2,3,4,……1000,禁止 delete xxx from tbl1 where id=1 这样的语句执行1000条,建议 delete xxx from tbl1 where id in (1,2,3…,1000)

  • 【必须】drop 操作默认会进入 FE 回收站,并保留 86400 秒(即 1 天),在这段时间内可以 recover 进行恢复,以防误操作。此行为受 catalog_trash_expire_second 参数控制。超过 1 天后,文件会移至 BE 的 trash 目录,默认保留 259200 秒(即 3 天)。

版本 2.5.17、3.0.9 和 3.1.6 之后版本开始,BE 的默认保留时间已调整为86400 秒( 1 天),这一设置受 trash_file_expire_time_sec 参数影响。如果需要在 drop 操作后迅速释放磁盘空间,可以适当减少 FE 和 BE 的 trash 保留时间。

PART 04 查询

高并发场景

  • 【建议】尽可能利用分区分桶裁剪,具体参考上文的分区和分桶选择部分

  • 【必须】调大客户的并发限制,可以设置为 1000,默认 100,SET PROPERTY FOR ‘jack’ ‘max_user_connections’ = ‘1000’;

  • 【必须】开启 Page Cache、Query Cache

数据精度

  • 【必须】如果需要精确结果的,强制使用 DECIMAL 类型,不要使用 FLOAT、DOUBLE 类型

SQL 查询

  • 【必须】避免 select *,建议指定需要查询的列,例如 select col0,col1 from tb1

  • 【必须】避免全表扫描,建议增加过滤的谓词,例如 select col0,col1 from tb1 where id=123,select col0,col1 from tb1 where dt>‘2024-01-01’

  • 【必须】为防止大量数据的一次性下载,建议强制采用分页查询。例如,使用以下分页查询语句来限制结果集中的列数和记录数:SELECT col0, col1, col2, …, col50 FROM tb ORDER BY id LIMIT 0, 50000。这样可以有效地管理和减少单次查询返回的数据量

  • 【必须】分页操作需要加上 order by,要不然是无序的

  • 【建议】避免使用一些不必要的函数或者表达式

  • 谓词中含 cast, 可以移除

-- Q1
select l_tax 
from lineitem 
where cast(l_shipdate as varchar) > substr('1990-01-02 12:30:31',1,10);-- Q2
select l_tax 
from lineitem 
where l_shipdate > '1990-01-02';
  • 过度使用函数处理表达式
-- Q1 bad case
select count(1) 
from lineitem 
where l_shipdate >= regexp_extract("TIME:1996-01-02 20:00:00", "(\\d{4}-\\d{2}-\\d{2})", 1);-- Q2
select count(1) 
from lineitem 
where l_shipdate >= "1996-01-02"
-- Q1 bad case
select count(1) 
from lineitem 
where DATE_FORMAT(l_shipdate,'%Y-%m-%d') >= "1996-01-02"-- Q2 good case
select count(1) 
from lineitem 
where l_shipdate >= "1996-01-02"

Join

  • 【必须】关联的字段类型匹配,虽然 StarRocks 已经在内部做了隐式转换来达到最优的性能,不过建议大家使用类型一致的字段 Join,避免使用 FLOAT、DOUBLE 类型 Join,可能会导致结果不准确

  • 【必须】关联字段建议不要使用函数或者表达式,例如 join on DATE_FORMAT(tb1.col1,‘%Y-%m-%d’)=DATE_FORMAT(tb2.col1,‘%Y-%m-%d’)

  • 【必须】2 个或多个 KW 行以上的表 Join,推荐 Colocate Join

  • 【建议】避免笛卡尔积

    • 查询多个表需要指定连接条件
-- bad case
SELECT *
FROM table1, table2;-- good case
SELECT *
FROM table1, table2 ON table1.column1 = table2.column1;
* 正确关联子查询

在子查询中,确保外部查询和子查询之间的列有明确的关联

-- bad case
SELECT *
FROM table1
WHERE column1 IN (SELECT column2 FROM table2);-- good case
SELECT *
FROM table1
WHERE column1 IN (SELECT column2 FROM table2 WHERE table1.column3 = table2.column3);

使用物化视图加速查询

  • 精确去重

以下示例基于一张广告业务相关的明细表 advertiser_view_record ,其中记录了点击日期 click_time 、广告代码 advertiser 、点击渠道 channel 以及点击用户 ID user_id

CREATE TABLE advertiser_view_record(click_time DATE,advertiser VARCHAR(10),channel VARCHAR(10),user_id INT) distributed BY hash(click_time);

该场景需要频繁使用如下语句查询点击广告的 UV。

SELECT advertiser, channel, count(distinct user_id)FROM advertiser_view_record
GROUP BY advertiser, channel;

如需实现精确去重查询加速,您可以基于该明细表创建一张物化视图,并使用 bitmap_union() 函数预先聚合数据。

CREATE MATERIALIZED VIEW advertiser_uv AS SELECT advertiser, channel, bitmap_union(to_bitmap(user_id))FROM advertiser_view_record
GROUP BY advertiser, channel;

物化视图创建完成后,后续查询语句中的子查询 count(distinct user_id) 会被自动改写为 bitmap_union_count (to_bitmap(user_id)) 以便查询命中物化视图。

  • 异步物化视图最多支持 3 层嵌套

利用 Cache 加速查询

  • 【建议】Page Cache:建议开启,可以加速数据扫描场景,如果内存有冗余,可以尽可能调大限制,默认是 mem_limit*20%

  • 【建议】Query Cache,建议开启,可以加速单表或多表 Join 的聚合场景

    • 查询中不能包含 randrandomuuidsleep 等不确定性 (Nondeterminstic) 函数
  • 【建议】Data Cache,用于存算分离和湖分析场景,建议这两个场景下默认开启

PART 05 监控

  1. 【必须】通过审计插件把 fe.audit.log 的数据导入一个表方便进行分析慢查询。

通过 Audit Loader 管理 StarRocks 中的审计日志 @ audit_loader

  1. 【必须】参考 “https://docs.starrocks.io/zh/docs/2.5/administration/Monitor_and_Alert/ ” 部署 prometheus+grafana

  2. 【建议】利用资源隔离大查询熔断,小查询保底

# shortquery_group 资源组用于核心业务重保
CREATE RESOURCE GROUP shortquery_group
TO (user='rg1_user1', role='rg1_role1', db='db1', query_type in ('select'), source_ip='192.168.x.x/24'),
WITH ('type' = 'short_query','cpu_core_limit' = '10','mem_limit' = '20%'
);# bigquery_group 用于大查询熔断,避免大查询将集群资源打满
CREATE RESOURCE GROUP bigquery_group
TO (user='rg1_user2', role='rg1_role1', query_type in ('select')),
WITH ("type" = 'normal','cpu_core_limit' = '10','mem_limit' = '20%','big_query_cpu_second_limit' = '100','big_query_scan_rows_limit' = '100000','big_query_mem_limit' = '1073741824'
);
  1. 大查询定位

查看当前 FE 上正在运行的查询 SQL 命令: ``

show proc '/current_queries'

返回结果包括以下几列:

  • QueryId

  • ConnectionId

  • Database:当前查询的 DB

  • User:用户

  • ScanBytes:当前已扫描的数据量,单位 Bytes

  • ProcessRow:当前已扫描的数据行数

  • CPUCostSeconds:当前查询已使用的 CPU 时间,单位秒。此为多个线程累加的 CPU 时间,举个例子,如果有两个线程分别占用 1 秒和 2 秒的 CPU 时间,那么累加起来的 CPU 时间为 3 秒

  • MemoryUsageBytes:当前占用的内存。如果查询涉及到多个 BE 节点,此值即为该查询在所有 BE 节点上占用的内存之和

  • ExecTime:查询从发起到现在的时长,单位为毫秒

mysql> show proc '/current_queries';
+--------------------------------------+--------------+------------+------+-----------+----------------+----------------+------------------+----------+
| QueryId                              | ConnectionId | Database   | User | ScanBytes | ProcessRows    | CPUCostSeconds | MemoryUsageBytes | ExecTime |
+--------------------------------------+--------------+------------+------+-----------+----------------+----------------+------------------+----------+
| 7c56495f-ae8b-11ed-8ebf-00163e00accc | 4            | tpcds_100g | root | 37.88 MB  | 1075769 Rows   | 11.13 Seconds  | 146.70 MB        | 3804     |
| 7d543160-ae8b-11ed-8ebf-00163e00accc | 6            | tpcds_100g | root | 13.02 GB  | 487873176 Rows | 81.23 Seconds  | 6.37 GB          | 2090     |
+--------------------------------------+--------------+------------+------+-----------+----------------+----------------+------------------+----------+
2 rows in set (0.01 sec)

查看某个查询在每个 BE 节点上的资源消耗 SQL 命令: ``

show proc '/current_queries/${query_id}/hosts'

返回结果有多行,每行描述该查询在对应 BE 节点上的执行信息,包括以下几列:

  • Host:BE 节点信息

  • ScanBytes:已经扫描的数据量,单位 Bytes

  • ScanRows:已经扫描的数据行数

  • CPUCostSeconds:已使用的 CPU 时间

  • MemUsageBytes:当前占用的内存

mysql> show proc '/current_queries/7c56495f-ae8b-11ed-8ebf-00163e00accc/hosts';
+--------------------+-----------+-------------+----------------+---------------+
| Host               | ScanBytes | ScanRows    | CpuCostSeconds | MemUsageBytes |
+--------------------+-----------+-------------+----------------+---------------+
| 172.26.34.185:8060 | 11.61 MB  | 356252 Rows | 52.93 Seconds  | 51.14 MB      |
| 172.26.34.186:8060 | 14.66 MB  | 362646 Rows | 52.89 Seconds  | 50.44 MB      |
| 172.26.34.187:8060 | 11.60 MB  | 356871 Rows | 52.91 Seconds  | 48.95 MB      |
+--------------------+-----------+-------------+----------------+---------------+
3 rows in set (0.00 sec)

更多交流,联系我们:https://wx.focussend.com/weComLink/mobileQrCodeLink/33412/8da64

这篇关于StarRocks 实战指南:100+ 大型企业背后的最佳实践经验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/929507

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用JavaScript将PDF页面中的标注扁平化的操作指南

《使用JavaScript将PDF页面中的标注扁平化的操作指南》扁平化(flatten)操作可以将标注作为矢量图形包含在PDF页面的内容中,使其不可编辑,DynamsoftDocumentViewer... 目录使用Dynamsoft Document Viewer打开一个PDF文件并启用标注添加功能扁平化

电脑显示hdmi无信号怎么办? 电脑显示器无信号的终极解决指南

《电脑显示hdmi无信号怎么办?电脑显示器无信号的终极解决指南》HDMI无信号的问题却让人头疼不已,遇到这种情况该怎么办?针对这种情况,我们可以采取一系列步骤来逐一排查并解决问题,以下是详细的方法... 无论你是试图为笔记本电脑设置多个显示器还是使用外部显示器,都可能会弹出“无HDMI信号”错误。此消息可能

如何安装 Ubuntu 24.04 LTS 桌面版或服务器? Ubuntu安装指南

《如何安装Ubuntu24.04LTS桌面版或服务器?Ubuntu安装指南》对于我们程序员来说,有一个好用的操作系统、好的编程环境也是很重要,如何安装Ubuntu24.04LTS桌面... Ubuntu 24.04 LTS,代号 Noble NumBAT,于 2024 年 4 月 25 日正式发布,引入了众

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了