python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】

本文主要是介绍python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给你一个正整数 n,生成一个包含 1n^2 所有元素的 n x n 正方形矩阵,数组的元素按螺旋顺序依次填充。

输入格式
  • n:一个正整数,表示矩阵的大小。
输出格式
  • 返回一个 n x n 的数组,按螺旋顺序填充从 1n^2 的整数。
示例 1
输入: n = 3
输出: [[1,2,3],[8,9,4],[7,6,5]]

方法一:模拟螺旋填充

解题步骤
  1. 初始化矩阵:创建一个 n x n 的矩阵,初始填充值为 0
  2. 螺旋遍历:定义四个方向,模拟螺旋遍历的过程,按顺序填入数字。
  3. 边界条件处理:在填充过程中,需要不断检查下一个位置是否超出边界或已被填充。
完整的规范代码
def generateMatrix(n):"""使用模拟螺旋遍历的方法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]  # right, down, left, uprow, col, di = 0, 0, 0for i in range(1, n*n + 1):matrix[row][col] = idr, dc = directions[di]if not (0 <= row + dr < n and 0 <= col + dc < n and matrix[row + dr][col + dc] == 0):di = (di + 1) % 4  # Change directiondr, dc = directions[di]row, col = row + dr, col + dcreturn matrix# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),其中 n 是矩阵的维度,需要填充 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵。

方法二:分层填充法

解题步骤
  1. 定义边界:设置上下左右四个边界,控制填充范围。
  2. 外层到内层填充:按层模拟填充过程,每完成一圈缩小填充范围。
  3. 逐层填充:按照右下左上的顺序逐层填充,每填完一全圈,四个边界向内缩进。
完整的规范代码
def generateMatrix(n):"""使用分层填充法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]left, right, top, bottom = 0, n-1, 0, n-1num = 1while left <= right and top <= bottom:for i in range(left, right + 1):matrix[top][i] = numnum += 1top += 1for i in range(top, bottom + 1):matrix[i][right] = numnum += 1right -= 1if top <= bottom:for i in range(right, left - 1, -1):matrix[bottom][i] = numnum += 1bottom -= 1if left <= right:for i in range(bottom, top - 1, -1):matrix[i][left] = numnum += 1left += 1return matrix# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),必须填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵。

方法三:递归填充

解题步骤
  1. 递归函数定义:定义一个递归函数用于填充每一层。
  2. 递归填充:从外层向内层递归填充,每次递归填充一圈。
  3. 终止条件:当填充完成或只剩下一行/一列时终止递归。
完整的规范代码
def generateMatrix(n):"""使用递归方法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]fill(matrix, 0, n, 1)return matrixdef fill(matrix, start, n, val):if n <= 0:returnif n == 1:matrix[start][start] = valreturnfor i in range(n - 1):matrix[start][start + i] = valval += 1for i in range(n - 1):matrix[start + i][start + n - 1] = valval += 1for i in range(n - 1):matrix[start + n - 1][start + n - 1 - i] = valval += 1for i in range(n - 1):matrix[start + n - 1 - i][start] = valval += 1fill(matrix, start + 1, n - 2, val)# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),需要填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵,加上递归栈的开销(最坏情况下为 (O(n)))。

方法四:迭代展开

解题步骤
  1. 初始化变量:定义矩阵、起始点、方向等变量。
  2. 迭代填充:通过迭代的方式填充矩阵,类似于方法一但避免了方向切换的复杂判断。
  3. 边界处理:在迭代中处理矩阵边界和已填充元素的情况。
完整的规范代码
def generateMatrix(n):"""使用迭代展开的方法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]x, y, dx, dy = 0, 0, 0, 1for i in range(1, n*n+1):matrix[x][y] = iif matrix[(x+dx)%n][(y+dy)%n]:dx, dy = dy, -dxx, y = x + dx, y + dyreturn matrix# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),需要填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵。

方法五:分治填充

解题步骤
  1. 定义填充函数:创建一个函数用于填充矩阵的一圈。
  2. 分治递归:递归地填充外圈后,对内层矩阵进行相同操作。
  3. 终止与初始化:当矩阵大小减小到1或0时终止递归。
完整的规范代码
def generateMatrix(n):"""使用分治填充法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]fill_layer(matrix, 0, n, 1)return matrixdef fill_layer(matrix, start, size, start_val):if size <= 0:returnif size == 1:matrix[start][start] = start_valreturn# Fill the perimeterfor i in range(size - 1):matrix[start][start+i] = start_valstart_val += 1for i in range(size - 1):matrix[start+i][start+size-1] = start_valstart_val += 1for i in range(size - 1):matrix[start+size-1][start+size-1-i] = start_valstart_val += 1for i in range(size - 1):matrix[start+size-1-i][start] = start_valstart_val += 1fill_layer(matrix, start+1, size-2, start_val)# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),需要填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵,递归栈深度依矩阵大小而定。

不同算法的优劣势对比

特征方法一: 模拟螺旋填充方法二: 分层填充法方法三: 递归填充方法四: 迭代展开方法五: 分治填充
时间复杂度(O(n^2))(O(n^2))(O(n^2))(O(n^2))(O(n^2))
空间复杂度(O(n^2))(O(n^2))(O(n^2))(O(n^2))(O(n^2))
优势直观易理解清晰结构化结构简单代码简洁递归清晰,易于理解
劣势稍微复杂的控制流多次循环递归深度问题边界处理复杂空间使用多,递归深度

应用示例

游戏开发
在游戏开发中,尤其是需要生成迷宫或特定图案的场景设计里,螺旋矩阵可以用于设计关卡的地图布局,例如生成螺旋迷宫地图,增加游戏的趣味性和挑战性。

通过上述方法,开发者可以选择最适合其应用场景的算法来实现高效、可靠的矩阵生成功能。

这篇关于python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928531

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja