【无监督+自然语言】GPT,GPT-2,GPT-3 方法概述 (Generative Pre-Traning)

2024-04-23 05:20

本文主要是介绍【无监督+自然语言】GPT,GPT-2,GPT-3 方法概述 (Generative Pre-Traning),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要参考

【GPT,GPT-2,GPT-3 论文精读【李沐论文精读】-2022.03.04】 https://www.bilibili.com/video/BV1AF411b7xQ/
大语言模型综述: http://t.csdnimg.cn/4obR4
在这里插入图片描述

发展节点

2017.06 Transformer: 所有大语言模型LLMs的基础结构 , Attention is all you need !
2018.06 GPT: 只用Transformer解码器,只预测未来:Improving language understanding by Generative Pre-Traning
2018.10 BERT:对标GPT,编解码结构,完型填空
2019.02 GPT-2: 更大的数据集: Language Models are Unsupervised Multitast Learner
2020.05 GPT-3: 相对于GPT-2数据和模型都大了100倍 (极少数公司能做)
GPT-3:Language models are few-shot learners

一、GPT-1: 使用大量没有标记文本无监督训练 (Generative Pre-Traning )

论文:利用生成式预训练来提高自然语言理解
Improving language understanding by Generative Pre-Traning

二阶段训练模型:大量无标记文本 + 人工标注任务

通过在大规模无标签文本语料库上进行生成式预训练,并在每个特定任务上进行判别式微调,可以在多种自然语言理解任务上获得大幅度的提升

结构上,只用Transformer的编码器预测(预测未来)见下图左侧
损失函数上是与bert不同的
通过在大规模无标签文本语料库上进行生成式预训练,并在每个特定任务上进行判别式微调,可以在多种自然语言理解任务上获得大幅度的提升

结构与应用(预训练后,在有标注文本训练下流任务)

开始符号、结束符号、终止符
下图(左),表示Transformer架构和训练目标。
下图(右),表示 微调不同任务的输入转换示意。将所有结构化输入转换为由我们的预训练模型处理的标记序列,然后是线性+softmax 层。
其中,右侧绿色transformer块表示第一阶段得到的预训练模型
在这里插入图片描述

  • Extract” :指从模型的某个部分提取信息或特征的过程。模型会处理文本,提取和学习复杂的特征和模式。这个过程可以被视作是在“抽取”输入文本的语义和句法信息
  • Delim”则可能是“Delimiter”的缩写,指的是分隔符。在自然语言处理任务中,分隔符用于区分文本中的不同部分
    分隔符可以用来明确哪部分是前提(Premise),哪部分是假设(Hypothesis)。在处理输入数据时,模型会识别这些分隔符,以便正确地解析和处理各部分信息。

二、GPT-2: 语言模型是无监督的多任务学习器

论文:Language Models are Unsupervised Multitast Learner

参数15亿,Bert 1.3亿,参数相差大,但是性能差别不大, 主要创新点是zero-shot:
无监督训练后,不微调下游任务——没有任何参数或架构修改

输入更像自然语言
语言翻译:
(translate to french, english text, french text)
阅读理解
(answer the question, document, question, answer)

三、GPT-3 : 基于gpt-2,细节不明 (无监督训练,不需要参数更新就能学会各种任务)

20.05.Language models are few-shot learners

不用再进行模型参数更新,就能直接适应下游任务

零样本、少样本学习的关系

zero-shot:零样本:表示不训练,也不给示例,直接说一句功能(例如翻译英文到中文)
one-shot :一张范例:表示给出一个范例
few-show:给出多个范例
在这里插入图片描述

模型大小与少样本学习性能关系:少样本、零样本学习的准确率关系

实验表明:GPT3参数量扩大几百倍后,少量样本(few-shot)的学习,**准确率从20%左右到了50%**多

在这里插入图片描述

8个不同大小的模型

模型的大小、架构和学习超参数(令牌中的批量大小和学习率)。所有模型都训练了总共 300 亿个令牌。
在这里插入图片描述

用的数据集

在这里插入图片描述

附录

作者信息

GPT-1

在这里插入图片描述

GPT-2

在这里插入图片描述

GPT-3

在这里插入图片描述

这篇关于【无监督+自然语言】GPT,GPT-2,GPT-3 方法概述 (Generative Pre-Traning)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927888

相关文章

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。