数据可视化(八):Pandas时间序列——动态绘图,重采样,自相关图,偏相关图等高级操作

本文主要是介绍数据可视化(八):Pandas时间序列——动态绘图,重采样,自相关图,偏相关图等高级操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!数据源存放在我的资源下载区啦!

数据可视化(八):Pandas时间序列——动态绘图,重采样,自相关图,偏相关图等高级操作

目录

  • 数据可视化(八):Pandas时间序列——动态绘图,重采样,自相关图,偏相关图等高级操作
    • 1. 时间序列分析1
      • 问题1:将列 date 转化为日期时间类型,并设置为索引
      • 问题2:按年份 统计开盘价(open列) 均值,并绘制直方图
      • 问题3:重采样,按月分析 open 列均值,并绘制折线图
    • 2. 时间序列分析2
      • 问题1:将列 Period 转化为 日期时间(datetime) 类型,并按列 Period 排序。
      • 问题2:将列 Period 转化为 时期(Period)类型,并设置为索引
      • 问题3:删除还有缺失值的行,绘制Sales_quantity列的自相关图和偏自相关图
      • 问题4:绘制收入(Revenue)和销售量(Sales_quantity)随Period变化的折线图
      • 问题5:通过3期滚动平均值和标准差,绘制收入和销售量数据折线图,判断其是否平稳
    • 时间序列分析3
      • 问题1:按日期统计销售量,绘制销售数量的折线图,观察是否具备周期性
      • 问题2:将Date列转换为datetime类型,并作为索引。
      • 问题3:对上一题生成dataframe重新采样(按月和按年)后计算number_sold总量,然后绘制number_sold总量的折线图。
    • matplotlib绘图题
      • 1. 仿照讲义中例子,采用calendar和matplotlib绘制月历,要实时获取当前年月。
      • 2. 采用matplotlib绘制动画,动态显示按月销量。

1. 时间序列分析1

股票(上证600519)分析

文件:assets/SH600519.csv

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 绘图使用
# 支持中文
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']  # SimHei 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
%matplotlib inline # 读取数据df = pd.read_csv('SH600519.csv', index_col=0)  # 读取 上证600519 贵州茅台股票数据 index_col=0表示去掉自动增添的索引列
df.sample(5)

问题1:将列 date 转化为日期时间类型,并设置为索引

# 代码
# 转化 'date' 列为 datetime 类型  
df['date'] = pd.to_datetime(df['date'])  # 设置 'date' 列为索引  
df.set_index('date', inplace=True)
df.head()

问题2:按年份 统计开盘价(open列) 均值,并绘制直方图

# 代码
# 提取年份  
df['year'] = df.index.year  # 按年份分组并计算开盘价的均值  
mean_open_by_year = df.groupby('year')['open'].mean()  # 但更常见的是使用条形图来展示每年的均值  
mean_open_by_year.plot(kind='bar')  
plt.xlabel('Year')  
plt.xticks(rotation=45)  # 如果年份标签太长,可以旋转显示  
plt.ylabel('Mean Opening Price')  
plt.title('Mean Opening Price by Year (Bar Chart)')  
plt.show()

问题3:重采样,按月分析 open 列均值,并绘制折线图

# 代码
# 重采样,按月计算 open 列的均值  
monthly_mean_open = df['open'].resample('M').mean()  # 绘制折线图  
plt.figure(figsize=(10, 5))  # 设置图形大小  
plt.plot(monthly_mean_open.index, monthly_mean_open.values, marker='o')  
plt.xlabel('Date')  
plt.ylabel('Mean Opening Price')  
plt.title('Monthly Mean Opening Price')  
plt.xticks(rotation=45)  # 如果日期标签重叠,可以旋转显示  
plt.grid(True)  # 显示网格线  
plt.show()

2. 时间序列分析2

销售企业数据时间序列分析。

数据集合的列名含义:

数据:assets/Month_Value_1.csv

Period Revenue Sales_quantity Average_cost The_average_annual_payroll_of_the_region

时期 收入 销售量 平均成本 该地区每年的员工平均薪酬总额

#读取数据df = pd.read_csv('Month_Value_1.csv')  # 读取数据
display( df.head(5) )
df.info()

问题1:将列 Period 转化为 日期时间(datetime) 类型,并按列 Period 排序。

# 编码
# 转化 'Period' 列为 datetime 类型  
df['Period'] = pd.to_datetime(df['Period'])
df = df.sort_values(by="Period",ascending=True).reset_index(drop=True)
df.head()

问题2:将列 Period 转化为 时期(Period)类型,并设置为索引

# 编码
# 将 'Period' 列转化为 Period 类型  
# 然后将 datetime 转换为 Period 类型(假设频率为日)  
df['Period'] = df['Period'].dt.to_period('d')   # 将 'Period' 列设置为索引  
df.set_index('Period', inplace=True)  # 查看结果  
df.head()

问题3:删除还有缺失值的行,绘制Sales_quantity列的自相关图和偏自相关图

  • 自相关图是一种展示时间序列数据与其自身过去值之间相关性的图形。在统计和数据分析中,自相关图常被用于识别序列中的周期性或趋势,以及评估数据的随机性。通过自相关图,可以观察到数据在不同时间间隔上的相关性程度,从而帮助理解和分析数据的特性。
  • 偏自相关图是一种用于展示时间序列数据中某一时刻的值与其之前时刻的值之间的直接(非间接)相关性的图形。与自相关图不同,偏自相关图在计算相关性时,会排除其他时间点上的值所带来的间接影响,从而更直接地反映两个时间点之间的相关性。
# 编码
# 删除缺失值的行
df = df.dropna()
df.info()df.dtypesfrom statsmodels.graphics.tsaplots import plot_acf, plot_pacf 
import warnings  
warnings.filterwarnings("ignore")# 绘制 Sales_quantity 列的自相关图  
fig, ax = plt.subplots(figsize=(10, 5))  
plot_acf(df['Sales_quantity'], lags=40, ax=ax)  
plt.title('Autocorrelation Function of Sales_quantity')  
plt.show()  # 绘制 Sales_quantity 列的偏自相关图  
fig, ax = plt.subplots(figsize=(10, 5))  
plot_pacf(df['Sales_quantity'], lags=40, ax=ax)  
plt.title('Partial Autocorrelation Function of Sales_quantity')  
plt.show()

问题4:绘制收入(Revenue)和销售量(Sales_quantity)随Period变化的折线图

#编码
df.dtypesdf.index# 将索引转换为日期时间类型
df.index = df.index.to_timestamp()# 确认索引已经转换为日期时间类型
df.index# 然后再绘制折线图
plt.figure(figsize=(10, 6))
plt.plot(df.index, df['Revenue'], label='Revenue')
plt.plot(df.index, df['Sales_quantity'], label='Sales_quantity')
plt.xlabel('Period')
plt.ylabel('Amount')
plt.title('Revenue and Sales Quantity Over Time')
plt.legend()
plt.show()

问题5:通过3期滚动平均值和标准差,绘制收入和销售量数据折线图,判断其是否平稳

#编码
# 计算3期滚动平均值和标准差
rolling_mean = df.rolling(window=3).mean()
rolling_std = df.rolling(window=3).std()# 绘制原始数据的折线图
plt.figure(figsize=(10, 6))
plt.plot(df.index, df['Revenue'], label='Revenue')
plt.plot(df.index, df['Sales_quantity'], label='Sales_quantity')# 绘制滚动平均值和标准差的折线图
plt.plot(rolling_mean.index, rolling_mean['Revenue'], label='Rolling Mean (3 periods)', linestyle='--')
plt.plot(rolling_std.index, rolling_std['Revenue'], label='Rolling Std (3 periods)', linestyle='--')plt.plot(rolling_mean.index, rolling_mean['Sales_quantity'], label='Rolling Mean (3 periods)', linestyle='--')
plt.plot(rolling_std.index, rolling_std['Sales_quantity'], label='Rolling Std (3 periods)', linestyle='--')plt.xlabel('Period')
plt.ylabel('Amount')
plt.title('Revenue and Sales Quantity Over Time with Rolling Mean and Standard Deviation')
plt.legend()
plt.show()

时间序列分析3

销售数据分析。

数据:assets/sale_train.csv

数据列:

Date store product number_sold

日期 商店ID 产品ID 销售数量

# 读取数据df = pd.read_csv('sale_train.csv')  # 读取数据
display( df.sample(5) )
df.info()

问题1:按日期统计销售量,绘制销售数量的折线图,观察是否具备周期性

# 编码
# 将日期列转换为日期时间类型,并将其设置为索引
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
df.head()df.dtypesdf.index

问题2:将Date列转换为datetime类型,并作为索引。

# 编码
# 按日期统计销售量
sales_by_date = df.groupby(df.index).sum()# 绘制销售数量的折线图
plt.figure(figsize=(10, 6))
plt.plot(sales_by_date.index, sales_by_date['number_sold'], marker='o')
plt.xlabel('Date')
plt.ylabel('Number of Sales')
plt.title('Sales Quantity Over Time')
plt.grid(True)
plt.show()

问题3:对上一题生成dataframe重新采样(按月和按年)后计算number_sold总量,然后绘制number_sold总量的折线图。

# 编码
# 按月重新采样并计算每月的总销售量
sales_monthly = df.resample('M').sum()# 按年重新采样并计算每年的总销售量
sales_annually = df.resample('Y').sum()# 绘制总销售量的折线图
plt.figure(figsize=(8, 6))# 绘制按月重新采样后的折线图
plt.subplot(2, 1, 1)
plt.plot(sales_monthly.index, sales_monthly['number_sold'], marker='o', color='b')
plt.xlabel('Date')
plt.ylabel('Total Number of Sales')
plt.title('Total Sales Quantity (Monthly)')
plt.grid(True)# 绘制按年重新采样后的折线图
plt.subplot(2, 1, 2)
plt.plot(sales_annually.index, sales_annually['number_sold'], marker='o', color='g')
plt.xlabel('Year')
plt.ylabel('Total Number of Sales')
plt.title('Total Sales Quantity (Annually)')
plt.grid(True)plt.tight_layout()
plt.show()

matplotlib绘图题

1. 仿照讲义中例子,采用calendar和matplotlib绘制月历,要实时获取当前年月。

如下图:

import calendar
import matplotlib.pyplot as plt%matplotlib inline# 编码
import calendar
import matplotlib.pyplot as plt
import datetime
# 获取 2024 年 4 ⽉的⽇历
cal = calendar.monthcalendar(2024, 4)
# 绘制⽇历
plt.figure(figsize=(12, 12))
plt.imshow(cal, cmap="rainbow")
plt.xlabel('星期')
plt.ylabel('日期')
# 获取当前时间的年和月  
# 获取当前时间  
current_time = datetime.datetime.now()  # 格式化当前时间为“XXXX年XX月”的形式  
current_year_month = "{}年{:02d}月".format(current_time.year, current_time.month)  # 使用格式化后的时间设置图表标题  
plt.title("当前时间: {}".format(current_year_month))
# 标记周末和⼯作⽇
for i in range(len(cal)):for j in range(len(cal[0])):if j in [0, 6]:plt.text(j, i, cal[i][j], color="red", ha='center', va='center')else:plt.text(j, i, cal[i][j], color="black", ha='center', va='center')
plt.show()

2. 采用matplotlib绘制动画,动态显示按月销量。

每秒更新一次,每次更新时显示下一个月的销售额。在动画中,折线图会随着时间的推移逐渐绘制出来,并在每个点上显示销售月份和销售额。

如下图:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation%matplotlib notebook# 生成日期范围
dates = pd.date_range('2020-01', '2024-04', freq='M')# 生成销售数据
np.random.seed(2024)
sales_data = pd.DataFrame({'日期': dates,'销售额': np.random.randint(100, 201, size=len(dates))
})# 绘制折线图
plt.figure(figsize=(15, 6))
plt.plot(sales_data["日期"], sales_data["销售量"])
plt.xlabel('日期')
plt.ylabel("销售量")
plt.show()

这篇关于数据可视化(八):Pandas时间序列——动态绘图,重采样,自相关图,偏相关图等高级操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927364

相关文章

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL