[移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-3][Mobius transformations-3]

本文主要是介绍[移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-3][Mobius transformations-3],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

          参考 Professor Bonfert-Taylor's  《Mobius transformations》,我们重点理解

因此莫比乌斯变换是共形映射( conformal mappinngs )以及反演特性inversion 

目录

  1.    mobious transfromation 定义
  2.    mobious transfromation 性质
  3.    mobious transfromation  例子

一   mobious transfromation 定义

      mobious 变换有时候也称为分数线性变换(fractional linear transformation)

 

  例一: Mobius transformation 

         

    满足约束条条件,是mobious transfromation.

 1.1   当c\neq 0,z\rightarrow \infty

            b,d 可以忽略,则

            f(z)=\frac{az}{cz}=\frac{a}{z}

  1.2 当 c= 0,z\rightarrow \infty

             f(z)=\frac{az+b}{d}\rightarrow \infty

       我们因此定义

         f(z)=\left\{\begin{matrix} \frac{a}{c} , if \, \, z \rightarrow \infty & c \neq 0 \\ \infty, if \, \, z \rightarrow \infty & c =0 \end{matrix}\right.

1.3  c \neq 0, cz+d=0 

             z=\frac{-d}{c}

             f(z)=\frac{az+b}{0}\rightarrow \infty

因此,我们将 f 是定义在扩充复平面上的映射.

扩充复平面是指在普通的复平面z加入无穷远点构成的集合

    


二 Properties of mobious transfromation.

   

     1.1 f(z) 是非常数(non-constant )

          证明:

           先求导,导数不为0,所以f(z)不能是常数

         

            对于任意z ,f^{'}(z)\neq 0,因为导数不为0 ,所以f(z)也不能为常数

      

    1.2  非唯一性(not uniquely)

           

     如果分子分母同乘以一个constant k我们发现结果不变,所以对于给定的变换f(z) a,b,c,d并不是唯一的.

       f(z)=\frac{k(az+b)}{k(cz+d)}=f(z)

   1.3 one to one  一对一映射

           

          后面通过这点去理解 images and pre-images of infinity 无穷远的像和原像一一对应关系。


三  放射变换性质 (affine transformation )

        设 c= 0,d=1, 则 f(z)=az+b,

        因为 Mobius 变换

        ad-bc \neq0\rightarrow a \neq 0

           做旋转,膨胀,平移等操作(rotation  dilation  translation)

         i.e  b=0 时

              f(z)=az 相当于对原图像做旋转和膨胀(rotation&dilation)

         i.e  a=1 时

             f(z)=z+b 对原图像做平移(translation)

         

        通过极坐标可以很容易查看出来。

            


四  反演 变换(inveration)性质

     4.1 定义

        当 a=0,b=1,c=1,d=0: f(z)=\frac{1}{z} 这就是反演(inversion)

      

     4.2 保圆性例1: 

        设 z=re^{j\theta} 则 f(z)=\frac{1}{r}e^{-j\theta}

4.2   不过圆心的circle 反演(Inversion): 

     设圆通过mobius 变换后的图像是什么呢?

      设k=\begin{Bmatrix} z:|z-3|=1 \end{Bmatrix} 是一个半径为1的圆,中心点在3.

    那经过Mobius  Inversion 变换后的图像 f(k) 是什么呢?

     根据Inversion 定义:

                                         w=f(z)=\frac{1}{k}

                                           k=\frac{1}{w} \in K

    

   几何效果如下

4.3  过圆心的circle 反演(Inversion)

       K=\begin{Bmatrix} z:|z-1|=1 \end{Bmatrix} 是半径为1的圆,中心点在1,那么f(k)是什么?

几何意义:

   过圆心的圆通过Mobius 变换后得到一个Re(W)=\frac{1}{2}的直线

  我们总结一下映射关系

4.4: 直线的反演(Inversion)

        设直线  L=\begin{Bmatrix} {z:z=t+it,-\infty<t<\infty} \end{Bmatrix}

          则

                      

                                

参考:

https://www.youtube.com/watch?v=b6QJ6pb30q8

https://www.youtube.com/watch?v=u2e0Dc1wV2k&t=233s

默比乌斯变换_百度百科

这篇关于[移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-3][Mobius transformations-3]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926903

相关文章

无线路由器哪个品牌好用信号强? 口碑最好的三个路由器大比拼

《无线路由器哪个品牌好用信号强?口碑最好的三个路由器大比拼》不同品牌在信号覆盖、稳定性和易用性等方面各有特色,如何在众多选择中找到最适合自己的那款无线路由器呢?今天推荐三款路由器让你的网速起飞... 今天我们来聊聊那些让网速飞起来的路由器。在这个信息爆炸的时代,一个好路由器简直就是家庭网编程络的心脏。无论你

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

usaco 1.2 Transformations(模拟)

我的做法就是一个一个情况枚举出来 注意计算公式: ( 变换后的矩阵记为C) 顺时针旋转90°:C[i] [j]=A[n-j-1] [i] (旋转180°和270° 可以多转几个九十度来推) 对称:C[i] [n-j-1]=A[i] [j] 代码有点长 。。。 /*ID: who jayLANG: C++TASK: transform*/#include<

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费