YOLO_9000目标检测算法深度剖析

2024-04-22 07:08

本文主要是介绍YOLO_9000目标检测算法深度剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、何为YOLO_9000

二、9000种类的思考

三、引入WordTree

四、如何计算分类的损失

五、如何进行预测

六、相较YOLO_v2训练流程的改变


一、何为YOLO_9000

        YOLO_9000是在YOLO_v2的基础上进行9000中目标的分类算法,其结构等都与YOLO_v2一致,唯一不同的就是分类地方,不再是原先的20位,而是具有更加多样性的9000种目标的分类,本文就将对YOLO_9000如何在YOLO_v2的基础上进行9000中目标分类的进行详细讲解。有关YOLO_v2内容请移步 YOLO_v2目标检测算法深入剖析。

二、9000种类的思考

        众所周知,MNIST手写数字识别,Fashion-MNIST都是10分类的问题,VOC数据集也只有20种类,但是这些种类都有一个共同的特点,那就是各个种类之间是互不相关的,例如:1和4,裤子和鞋子,这些都是相互独立的东西,所以可以通过softmax进行分类,并能达到非常好的效果,但是如果分类的目标是,哈士奇,阿拉斯加,这种非常相近的目标的时候,显然使用softmax是非常不好的,因为哈士奇和阿拉斯加是有一部分共性的,那么这9000种种类中就存在着这样的问题,所以使用维度为9000的one-hot加上softmax是不合理的,那么我们到底该怎么办呢?

三、引入WordTree

        想必很多人都接触过赫夫曼编码,也就是用作压缩用的,需要构建赫夫曼树,其是二进制形式的,例如,一个单词的赫夫曼编码其可能是1011,这个就代表了这个单词。通过这个例子,我想此时就可以引出WordTree的思想了,看下图

图一:WordTree

        图一就是一个Wordtree,根表示是个物体,然后物体可以分为动物和其他一些种类(机器,家具等等),然后动物分成了哺乳动物和其他(比如,卵生动物等等),然后继续细分,直到数据集中的所有物种种类都被包含在其中,现在这个Wordtree构建完了,那么该如何使用呢?

        首先,虽然不是使用9000维度的one-hot形式进行softmax,但是分类所需要的维度依然是9000(虽然论文中是9418维度,但是这里去繁从简,定义为9000维度,不管维度是多少思想都是一样的),那么这个Wordtree总是可以按照一定的顺序进行遍历的,不管你是用BFS,还是DFS,到底是DFS中的先序、中序还是后序,只要你记住你是按照什么方式遍历的就可以,假如说你想要去找到dog这个物体,那么就是,physical object=1、animal=1、mammal=1、dog=1,除此以外的所有向量都是0,那么这个[1,1,1,1,0,0,0,...,0]就是dog的标签(这里的遍历顺序是假设的),可能cat就是[1,1,1,0,0,..,1,0,...,0],类似如此。总的来说就是,一个物体的细分路径上的点都要标记为1,如果一个物体由好几个路径可以到达,那么就选取从根节点到该物体最短的路径,以此来对其进行向量的标识。大体步骤参考下图二

图二:WordTree在向量中的表示

四、如何计算分类的损失

        通过本文的第三部分,我们知道了如何使用WordTree进行9000种类别的表示,那么一个最为关键的问题也出现了,如何去计算分类的损失呢?

        YOLO_9000采用的方法是,对于Wordtree同一层的分类进行softmax,例如,如果对狗进行损失计算,那么需要找到“dog”父亲节点的所有儿子节点,也就是“dog”节点的兄弟姐妹节点,例如图中的cat,然后再对他们进行softmax来计算误差。根据图一,可以清晰的看出该思想,因为和“dog”同层的物体时可以找出的,所以可以通过对同层的物体物体进行softmax。这么做也为之后的预测埋下了伏笔。

五、如何进行预测

        此时我们得到了一个9000维度的预测向量,那么我们就从根节点开始遍历,遍历的方向是前点的儿子中,概率最大的那个,然后一直向下,直到某个节点的儿子节点的概率低于设定的阈值,那么此时这个节点就是预测的节点。

六、相较YOLO_v2训练流程的改变

        由于ImageNet样本比COCO样本多很多,所以对COCO的采样会多一些,然后两者的比例是4:1,由于最后输出的分类向量的维度很大,考虑到时间复杂度,所以YOLO_9000的每个网格中的预测框数量由YOLO_v2的5个降低为3个。

这篇关于YOLO_9000目标检测算法深度剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925111

相关文章

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达