YOLO_9000目标检测算法深度剖析

2024-04-22 07:08

本文主要是介绍YOLO_9000目标检测算法深度剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、何为YOLO_9000

二、9000种类的思考

三、引入WordTree

四、如何计算分类的损失

五、如何进行预测

六、相较YOLO_v2训练流程的改变


一、何为YOLO_9000

        YOLO_9000是在YOLO_v2的基础上进行9000中目标的分类算法,其结构等都与YOLO_v2一致,唯一不同的就是分类地方,不再是原先的20位,而是具有更加多样性的9000种目标的分类,本文就将对YOLO_9000如何在YOLO_v2的基础上进行9000中目标分类的进行详细讲解。有关YOLO_v2内容请移步 YOLO_v2目标检测算法深入剖析。

二、9000种类的思考

        众所周知,MNIST手写数字识别,Fashion-MNIST都是10分类的问题,VOC数据集也只有20种类,但是这些种类都有一个共同的特点,那就是各个种类之间是互不相关的,例如:1和4,裤子和鞋子,这些都是相互独立的东西,所以可以通过softmax进行分类,并能达到非常好的效果,但是如果分类的目标是,哈士奇,阿拉斯加,这种非常相近的目标的时候,显然使用softmax是非常不好的,因为哈士奇和阿拉斯加是有一部分共性的,那么这9000种种类中就存在着这样的问题,所以使用维度为9000的one-hot加上softmax是不合理的,那么我们到底该怎么办呢?

三、引入WordTree

        想必很多人都接触过赫夫曼编码,也就是用作压缩用的,需要构建赫夫曼树,其是二进制形式的,例如,一个单词的赫夫曼编码其可能是1011,这个就代表了这个单词。通过这个例子,我想此时就可以引出WordTree的思想了,看下图

图一:WordTree

        图一就是一个Wordtree,根表示是个物体,然后物体可以分为动物和其他一些种类(机器,家具等等),然后动物分成了哺乳动物和其他(比如,卵生动物等等),然后继续细分,直到数据集中的所有物种种类都被包含在其中,现在这个Wordtree构建完了,那么该如何使用呢?

        首先,虽然不是使用9000维度的one-hot形式进行softmax,但是分类所需要的维度依然是9000(虽然论文中是9418维度,但是这里去繁从简,定义为9000维度,不管维度是多少思想都是一样的),那么这个Wordtree总是可以按照一定的顺序进行遍历的,不管你是用BFS,还是DFS,到底是DFS中的先序、中序还是后序,只要你记住你是按照什么方式遍历的就可以,假如说你想要去找到dog这个物体,那么就是,physical object=1、animal=1、mammal=1、dog=1,除此以外的所有向量都是0,那么这个[1,1,1,1,0,0,0,...,0]就是dog的标签(这里的遍历顺序是假设的),可能cat就是[1,1,1,0,0,..,1,0,...,0],类似如此。总的来说就是,一个物体的细分路径上的点都要标记为1,如果一个物体由好几个路径可以到达,那么就选取从根节点到该物体最短的路径,以此来对其进行向量的标识。大体步骤参考下图二

图二:WordTree在向量中的表示

四、如何计算分类的损失

        通过本文的第三部分,我们知道了如何使用WordTree进行9000种类别的表示,那么一个最为关键的问题也出现了,如何去计算分类的损失呢?

        YOLO_9000采用的方法是,对于Wordtree同一层的分类进行softmax,例如,如果对狗进行损失计算,那么需要找到“dog”父亲节点的所有儿子节点,也就是“dog”节点的兄弟姐妹节点,例如图中的cat,然后再对他们进行softmax来计算误差。根据图一,可以清晰的看出该思想,因为和“dog”同层的物体时可以找出的,所以可以通过对同层的物体物体进行softmax。这么做也为之后的预测埋下了伏笔。

五、如何进行预测

        此时我们得到了一个9000维度的预测向量,那么我们就从根节点开始遍历,遍历的方向是前点的儿子中,概率最大的那个,然后一直向下,直到某个节点的儿子节点的概率低于设定的阈值,那么此时这个节点就是预测的节点。

六、相较YOLO_v2训练流程的改变

        由于ImageNet样本比COCO样本多很多,所以对COCO的采样会多一些,然后两者的比例是4:1,由于最后输出的分类向量的维度很大,考虑到时间复杂度,所以YOLO_9000的每个网格中的预测框数量由YOLO_v2的5个降低为3个。

这篇关于YOLO_9000目标检测算法深度剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925111

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷