Win8Metro(C#)数字图像处理--2.25二值图像距离变换

本文主要是介绍Win8Metro(C#)数字图像处理--2.25二值图像距离变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



[函数名称]

二值图像距离变换函数DistanceTransformProcess(WriteableBitmap src)

[算法说明]

 二值图像的距离变换实际上就是将二值图像转换为灰度图像,在二值图像中我们将图像分为目标图像和背景图像,假设目标图像像素值为1,即为白色,背景像素为0即为黑色。在转换后的幅灰度图像中,每个连通域的各个像素点的灰度级与该像素点到其背景像素的最近距离有关。其中灰度级最大点的集合为目标图像的骨架,就是目标图像中心部分的像素的集合,灰度级反应了背景像素与目标图像边界的影响关系。用数学语言表示如下:

 假设二值图像I包含一个连通域S,其中有目标O和背景B,距离图为D,则距离变换定义如下:

 

 

距离变换的具体步骤为:

     1,将图像中的目标像素点分类,分为内部点,外部点和孤立点。

以中心像素的四邻域为例,如果中心像素为目标像素(值为1)且四邻域都为目标像素(值为1),则该点为内部点。如果该中心像素为目标像素,四邻域为背景像素(值为0),则该中心点为孤立点,如下图所示。除了内部点和孤立点之外的目标区域点为边界点。

       6,对于孤立点保持不变。

 以上的距离变换方法由于计算量大,比较耗时,因此在实际应用中,我们采用一种倒角模版算法,只需要对图像进行两次扫描就可以实现距离变换。该方法称为Chamfer倒角距离变换法。

 该方法使用两个模版,分别为前向模版和后向模板,如下图所示:

 

 计算步骤如下:

 1,使用前向模板,对图像从上到下,从左到右进行扫描,模板中心0点对应的像素值如果为0则跳过,如果为1则计算模板中每个元素与其对应的像素值的和,分别为Sum1,Sum2,Sum3,Sum4Sum5,而中心像素值为这五个和值中的最小值。

 2,使用后向模板,对图像从下到上,从右到左进行扫描,方法同上。

 3,一般我们使用的模板为3*35*5,分别如下图所示:

 
 

[函数代码]

       ///<summary>

       /// Distance transform of binary image.

       ///</summary>

       ///<param name="src">The source image.</param>

       ///<returns></returns>

       publicstaticWriteableBitmap DistanceTransformProcess(WriteableBitmap src)25二值图像距离变换

       {

           if (src !=null)

           {

               int w = src.PixelWidth;

               int h = src.PixelHeight;

               WriteableBitmap expansionImage =newWriteableBitmap(w, h);

               byte[] temp = src.PixelBuffer.ToArray();

               int t1, t2, t3, t4, t5, min = 0;

               for (int y = 0; y < h; y++)

               {

                   for (int x = 0; x < w * 4 - 4; x += 4)

                   {

                       if (y == 0 || x == 0)

                       {

                           temp[x + y * w * 4] = 0;

                           temp[x + 1 + y * w * 4] = 0;

                           temp[x + 2 + y * w * 4] = 0;

                       }

                       else

                       {

                           if (temp[x + y * w * 4] != 0)

                           {

                               t1 = temp[x - 3 + (y - 1) * w * 4] + 4;

                               t2 = temp[x + (y - 1) * w * 4] + 3;

                               t3 = temp[x + 3 + (y - 1) * w * 4] + 4;

                               t4 = temp[x - 3 + y * w * 4] + 3;

                               t5 = temp[x + y * w * 4];

                               min = GetMin(t1, t2, t3, t4, t5);

                               temp[x + y * w * 4] = (byte)min;

                               temp[x + 1 + y * w * 4] = (byte)min; temp[x + 2 + y * w * 4] = (byte)min;

                           }

                           t2 = 0; t3 = 0; t4 = 0; t5 = 0; min = 0;

                       }

                   }

               }

               for (int y = h - 2; y > 0; y--)

               {

                   for (int x = w * 4 - 4; x > 0; x -= 4)

                   {

                       if (y == 1 || x == 3)

                       {

                           temp[x + y * w * 4] = 0;

                           temp[x + 1 + y * w * 4] = 0;

                           temp[x + 2 + y * w * 4] = 0;

                       }

                       else

                       {

                           if (temp[x + y * w * 4] != 0)

                           {

                               t1 = temp[x - 3 + (y + 1) * w * 4] + 4;

                               t2 = temp[x + (y + 1) * w * 4] + 3;

                               t3 = temp[x + 3 + (y + 1) * w * 4] + 4;

                               t4 = temp[x + 3 + y * w * 4] + 3;

                               t5 = temp[x + y * w * 4];

                               min = GetMin(t1, t2, t3, t4, t5);

                               temp[x + y * w * 4] = (byte)min;

                               temp[x + 1 + y * w * 4] = (byte)min; temp[x + 2 + y * w * 4] = (byte)min;

                           }

                           t2 = 0; t3 = 0; t4 = 0; t5 = 0; min = 0;

                       }

                   }

               }

               Stream sTemp = expansionImage.PixelBuffer.AsStream();

               sTemp.Seek(0, SeekOrigin.Begin);

               sTemp.Write(temp, 0, w * 4 * h);

               return expansionImage;

           }

           else

           {

               returnnull;

           }

       }

       privatestaticint GetMin(int a, int b,int c,int d,int e)

       {

           int t = (a < b ? a : b) < c ? (a < b ? a : b) : c;

           return ((t < d ? t : d) < e ? (t < d ? t : d) : e);

       }

[图像效果]

这篇关于Win8Metro(C#)数字图像处理--2.25二值图像距离变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924570

相关文章

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

C#从XmlDocument提取完整字符串的方法

《C#从XmlDocument提取完整字符串的方法》文章介绍了两种生成格式化XML字符串的方法,方法一使用`XmlDocument`的`OuterXml`属性,但输出的XML字符串不带格式,可读性差,... 方法1:通过XMLDocument的OuterXml属性,见XmlDocument类该方法获得的xm

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,