【数据结构】算法效率揭秘:时间与空间复杂度的较量

2024-04-21 11:12

本文主要是介绍【数据结构】算法效率揭秘:时间与空间复杂度的较量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在计算机科学中,时间复杂度和空间复杂度是衡量算法性能的两个重要指标。它们分别表示算法在执行过程中所需的时间和空间资源。了解这两个概念有助于我们评估和比较不同算法的优劣,从而选择更合适的算法解决问题~

欢迎关注个人主页:逸狼


创造不易,可以点点赞吗~

如有错误,欢迎指出~



目录

前言

 算法效率

时间复杂度

大O的渐进表示法

推导大O阶

示例1  冒泡排序

若没有优化的代码

考虑最好的情况

考虑最坏的情况

代码优化后

考虑最好的情况

示例2  二分查找

示例3  递归(一路)

示例4  递归(二路)

空间复杂度

示例1(代码与上面示例1同)冒泡排序

示例2

示例3(代码与上面示例3同)递归(一路)


 算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作 空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,

时间复杂度

在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间

一个 算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。一个算 法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号


// 请计算一下func1基本操作执行了多少次?
void func1(int N){int count = 0;for (int i = 0; i < N ; i++) {for (int j = 0; j < N ; j++) {count++;//n^2}}
for (int k = 0; k < 2 * N ; k++) {count++;//2n}int M = 10;while ((M--) > 0) {count++;//n}System.out.println(count);
}

实际中我们计算时间复杂度时,只需要大概执行次数,所以使用大O的渐进表示法。N代表问题的规模。

推导大O阶

  1. 常数1取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)

大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到 

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

示例1  冒泡排序

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {for (int end = array.length; end > 0; end--) {boolean sorted = true;for (int i = 1; i < end; i++) {if (array[i - 1] > array[i]) {Swap(array, i - 1, i);sorted = false;}}if (sorted == true) {break;}}
}

若没有优化的代码

        if (sorted == true) {break;

考虑最好的情况

外循环end=n时,内循环要走n-1次

外循环end=n-1时,内循环要走n-2次

……

外循环end=2时,内循环要走1次

所以最好的情况总次数(n-1)+(n-2)+(n-3)+……+1=n^2/2-n/2,所以时间复杂度为O(n^2)

考虑最坏的情况

因为有两个for循环,直接n*n=n^2

代码优化后

考虑最好的情况

第一遍就是有序的,即至少要遍历一遍数据,所以时间复杂度为O(n)

示例2  二分查找

// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {int begin = 0;int end = array.length - 1;while (begin <= end) {int mid = begin + ((end-begin) / 2);if (array[mid] < value)begin = mid + 1;else if (array[mid] > value)end = mid - 1;elsereturn mid;}return -1;
}

二分查找,每次去除掉一半的数据,

考虑最坏的情况:找到最后一个数字为目标数字,

有N个数据,设当折半x次找到,则N/2^x=1,得x=log2N

示例3  递归(一路)

递归的时间复杂度=递归的次数 * 每次递归后的代码的执行次数

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {return N < 2 ? N : factorial(N-1) * N;
}

这里的递归次数为N次

每次递归回来执行了三目运算符,即1次

所以时间复杂度为N*1=N,即O(N)

示例4  递归(二路)

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

考虑最坏的情况,这里的递归次数为2^0+2^1+……+2^(N-1)=2^N-1次

每次递归回来执行了三目运算符,即1次

所以时间复杂度为2^N-1,即O(2^N)

空间复杂度

是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

示例1(代码与上面示例1同)冒泡排序

使用了常数个额外空间,所以空间复杂度为 O(1)

示例2

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {long[] fibArray = new long[n + 1];fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; i++) {fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

 示例2动态开辟了N个空间,空间复杂度为 O(N)

示例3(代码与上面示例3同)递归(一路)

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

这篇关于【数据结构】算法效率揭秘:时间与空间复杂度的较量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922942

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和

三国地理揭秘:为何北伐之路如此艰难,为何诸葛亮无法攻克陇右小城?

俗话说:天时不如地利,不是随便说说,诸葛亮六出祁山,连关中陇右的几座小城都攻不下来,行军山高路险,无法携带和建造攻城器械,是最难的,所以在汉中,无论从哪一方进攻,防守方都是一夫当关,万夫莫开;再加上千里运粮,根本不需要打,司马懿只需要坚守城池拼消耗就能不战而屈人之兵。 另一边,洛阳的虎牢关,一旦突破,洛阳就无险可守,这样的进军路线,才是顺势而为的用兵之道。 读历史的时候我们常常看到某一方势

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO