【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...)

本文主要是介绍【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 1. 前言 - 理解动态规划算法
  • 2. 关于 简单多状态的dp问题
    • 2.5 例题
    • 按摩师/打家劫舍
  • 3. 算法题
    • 3.1_打家劫舍II
    • 3.2_删除并获得点数
    • 3.3_粉刷房子
    • 3.4_买卖股票的最佳时机含冷冻期
    • 3.5_买卖股票的最佳时机含手续费
    • 3.6_买卖股票的最佳时机III
    • 3.7_买卖股票的最佳时机IV

前言

1. 前言 - 理解动态规划算法

关于 动态规划的理解 与例题,点击👇

【动态规划】C++解决斐波那契模型题目(三步问题、爬楼梯、解码方法…)

有了上面的经验,我们来解下面 简单多状态的dp问题


2. 关于 简单多状态的dp问题

对于该类问题,对于某一时刻、位置一般有 多种状态 (>=2),所以我们一般会采用一些方法:

  1. 创建多个dp数组表示每种状态
  2. 创建多维数组表示时刻的不同状态

2.5 例题

下面的算法题为一道例题,通过该题我们看对该类题的解法进行熟悉。

按摩师/打家劫舍

在这里插入图片描述

思路

  • 题意分析

    1. 对于该题,我们首先知道按摩师在某个时间段可以选择服务或者不服务,即 两种状态
    2. 而每进行一次服务就需要休息一天,我们需要找到最优的服务策略:即预约时常最长

所以我们创建两个dp数组,来进行状态转移方程的编写:

在这里插入图片描述
在这里插入图片描述

代码

class Solution {
public:int massage(vector<int>& nums) {int m = nums.size();// 边界条件if(m == 0) return 0;// dp[i]: 在i位置时的最长预约时间// f[i] 选择当前位置 g[i] 不选择当前位置(i位置)vector<int> f(m);auto g = f;// 初始化f[0] = nums[0]; // g[0] = 0; 默认为0for(int i = 1; i < m; ++i){f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);}return max(f[m-1], g[m-1]);}
};

3. 算法题

3.1_打家劫舍II

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,小偷对每一家可以选择偷或者不偷,即 两种状态
      又相邻的房屋不能同时被闯入(数组首位也算相邻),找能偷窃的最大金额。
    2. 从上面的分析,可以看出来该题和按摩师一题很像,区别在于数组首尾位置不能同时选择
    • 如何解决这一点?
      • 我们只需要分别算出来选择0位置和不选0位置的两种情况并求最大值即可。
      • 而其余部分和《按摩师》没有区别,下面简单写状态转移方程的分析:

在这里插入图片描述

代码

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();return max((nums[0] + _rob(nums, 2, n-2)), _rob(nums, 1, n-1));}// 打家劫舍I(按摩师) 的思路int _rob(vector<int>& nums, int left, int right){if(left > right) return 0; // 边界判断vector<int> f(nums.size());auto g = f;f[left] = nums[left]; // 初始化for(int i = left + 1; i <= right; ++i){f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);}return max(f[right], g[right]);}
};

3.2_删除并获得点数

在这里插入图片描述

思路

  • 题意分析
    1. 根据题意,我们可以知道,我们每次选择一个nums[i]删除并记录点数,后需要将相邻为1的数一并删除。
    2. 即不能同时统计相邻的位置的点数,很像按摩师(打家劫舍)的思路
  • 我们可以对数组进行预处理:

在这里插入图片描述
如图所示,此时对arr进行之前的代码操作即可。

代码

class Solution {
public:int deleteAndEarn(vector<int>& nums) {const int N = 10001;// 预处理数组 - 下标i对应 i在nums中的的总和vector<int> arr(N);for(int num : nums) arr[num] += num;// 在arr数组上 进行打家劫舍的操作// 创建dp数组vector<int> f(N);auto g = f;for(int i = 1; i < N; ++i){f[i] = g[i - 1] + arr[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[N-1], g[N-1]);}
};

3.3_粉刷房子

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,我们知道相邻房子的颜色不能相同,而每间房子都可以涂三种颜色,即 三种状态 ,我们可以用一个二维数组dp[i][j],其中j = 0, 1, 2分别代表三种颜色。

有了上面的思路,下面就可以进行解题了:

在这里插入图片描述

代码

class Solution {
public:int minCost(vector<vector<int>>& costs) {// dp[i][0] 在i层,刷红色漆时的最小花费// dp[i][1] 在i层,刷蓝色漆时的最小花费// dp[i][2] 在i层,刷绿色漆时的最小花费int m = costs.size(); // 只有三列 n = 3vector<vector<int>> dp(m+1, vector<int>(3));for(int i = 1; i <= m; ++i){dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0]; // 映射下标dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1];dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2];}return min(min(dp[m][0], dp[m][1]), dp[m][2]);}
};

3.4_买卖股票的最佳时机含冷冻期

在这里插入图片描述

思路

  • 题意分析
    1. 对于该题,每天的状态可能是:买入、卖出、冷冻期;相当于共有 三种状态 ,我们按照《粉刷房子》的思路创建二维dp数组。
    2. 当一天处于卖出状态时,实际上就是可交易,对于《粉刷房子》的要求是不能有连续相同的颜色,对于本题的要求自然不能有连续相同的状态,其他的通过下图得出:

下面画图找状态表示,以及通过三种状态的关系写状态转移方程

在这里插入图片描述

  • 关于初始化:
    1. dp[0][0] = -p[0] 第一天为“买入”,买入后此时钱包是负的
    2. dp[0][1] = dp[0][0] = 0
  • 关于返回值
    • max(dp[m - 1][1], dp[m - 1][2]):最后一天可以是卖出状态,可以是冷冻期、不可以是买入状态,两状态取最大值。

代码

class Solution {
public:int maxProfit(vector<int>& prices) {// dp[i][0]: 第i天时,为“买入状态“的最大利润// dp[i][1]: 第i天时,为“可交易状态”的最大利润// dp[i][2]: 第i天时,为“冷冻期”的最大利润int m = prices.size();vector<vector<int>> dp(m, vector<int>(3));dp[0][0] = -prices[0]; // 初始化for(int i = 1; i < m; ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];}return max(dp[m - 1][1], dp[m - 1][2]); // dp[m-1][0];最后不能是买入状态}
};

3.5_买卖股票的最佳时机含手续费

在这里插入图片描述

思路

  • 题意分析

    1. 根据题目,我们知道每一天有“买入”和“卖出”,即 两种状态 ,可以创建两个dp数组。
    2. 本题与前面《冷冻期》的差别在于,该题在卖出后,不存在冷冻期,第二天可以继续交易,但是需要考虑手续费,下面根据图得出关系:
  • 下面通过分析两种状态的关系,写出状态转移方程
    在这里插入图片描述

  • 关于初始化:

    • 根据买入状态与卖出状态,f[0] = -price[0], g[0] = 0;
  • 填表顺序:

    • 两个表均从左向右
  • 返回值

    • max(f[n-1], g[n-1])

代码

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int m = prices.size();// 预处理dp数组vector<int> f(m);auto g = f;// 初始化f[0] = -prices[0];for(int i = 1; i < m; ++i){f[i] = max(g[i-1] - prices[i], f[i-1]);g[i] = max(f[i-1] + prices[i] - fee, g[i-1]);}return g[m-1]; // 利润最大,自然最后一天不能选择买入,即不能是f[m-1]}
};

3.6_买卖股票的最佳时机III

在这里插入图片描述

思路

  • 题意分析

    1. 本题不需要考虑冷冻期、手续费,但加上了一个限制条件,即最多只能完成两笔交易,求最大利润(进行0次交易也是可以的,只要利润最大)
    2. 此时我们不但需要考虑某一天的状态,也需要考虑当前完成了几笔交易
  • 首先找状态表示与状态转移方程:
    在这里插入图片描述

  • 随后内容初始化以及其余细节问题:

在这里插入图片描述

代码

class Solution {
public:const int INF = 0x3f3f3f3f; // INT_MAX的1/2int maxProfit(vector<int>& prices) {int n = prices.size();// 创建dp数组vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f; // i位置时,进行了j笔交易,最后状态为卖出的最大利润// 初始化元素f[0][0] = -prices[0], g[0][0] = 0;// 计算for(int i = 1; i < n; ++i){for(int j = 0; j < 3; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);// g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]):需要初始化g[i]的一行一列// 通过修改状态转移方程,只需要初始化一行g[i][j] = g[i-1][j];if(j - 1 >= 0) g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]);}}// 找最后一行最大值int ret = 0;for(int k = 0; k < 3; ++k)ret = max(ret, g[n - 1][k]);return ret;}
};

3.7_买卖股票的最佳时机IV

在这里插入图片描述

思路

  • 题意分析 相比于前一题,该题的改动就是将买卖次数定为k次,其余条件不变,求最大利润。
  • 故只需更改之前代码中的条件即可,将次数设为k次。
  • 不再画图,思路同前。

代码

class Solution {
public:const int INF = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();k = min(k, n/2); // 最多交易n/2次vector<vector<int>> f(n, vector<int>(k+1, -INF)); // 第i天交易了j次、且为买入状态的最大利润auto g = f; // 第i天交易了j次、且为“卖出”状态的最大利润f[0][0] = -prices[0], g[0][0] = 0; // 初始化for(int i = 1; i < n; ++i)for(int j = 0; j <= k; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = g[i-1][j];if(j-1 >= 0) g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]); // f[i-1][j-1] j-1: 记录一次交易次数}int ret = 0;for(int j = 0; j <= k; ++j)ret = max(ret, g[n-1][j]);return ret;}
};

这篇关于【动态规划】C++简单多状态dp问题(打家劫舍、粉刷房子、买卖股票的最佳时机...)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920702

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象