《算法导论》实验四:哈夫曼(Huffman)编码问题(C++实现)

2024-04-20 11:48

本文主要是介绍《算法导论》实验四:哈夫曼(Huffman)编码问题(C++实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目描述

哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。一个包含100,000个字符的文件,各字符出现频率不同,如下表所示:
这里写图片描述
有多种方式表示文件中的信息,若用0,1码表示字符的方法,即每个字符用唯一的一个0,1串表示。若采用定长编码表示,则需要3位表示一个字符,整个文件编码需要300,000位;若采用变长编码表示,给频率高的字符较短的编码;频率低的字符较长的编码,达到整体编码减少的目的,则整个文件编码需要(45×1+13×3+12×3+16×3+9×4+5×4)×1000=224,000位,由此可见,变长码比定长码方案好,总码长减小约25%。

二、算法设计与分析

1、前缀码:

对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。编码的前缀性质可以使译码方法非常简单;例如001011101可以唯一的分解为0,0,101,1101,因而其译码为aabe。
译码过程需要方便的取出编码的前缀,因此需要表示前缀码的合适的数据结构。为此,可以用二叉树作为前缀码的数据结构:树叶表示给定字符;从树根到树叶的路径当作该字符的前缀码;代码中每一位的0或1分别作为指示某节点到左儿子或右儿子的“路标”。
这里写图片描述
图-1a 与固定长度编码对应的树; 图-1b 对应于最优前缀编码的树
从上图可以看出,表示最优前缀码的二叉树总是一棵完全二叉树,即树中任意节点都有2个儿子。图a表示定长编码方案不是最优的,其编码的二叉树不是一棵完全二叉树。在一般情况下,若C是编码字符集,表示其最优前缀码的二叉树中恰有|C|个叶子。每个叶子对应于字符集中的一个字符,该二叉树有|C|-1个内部节点。
给定编码字符集C及频率分布f,即C中任一字符c以频率f(c)在数据文件中出现。C的一个前缀码编码方案对应于一棵二叉树T。字符c在树T中的深度记为dT(c)。dT(c)也是字符c的前缀码长。则平均码长定义为:
这里写图片描述
使平均码长达到最小的前缀码编码方案称为C的最优前缀码。

2、构造哈夫曼编码:

哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码。其构造步骤如下:
(1)哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。
(2)算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。
(3)假设编码字符集中每一字符c的频率是f(c)。以f为键值的优先队列Q用在贪心选择时有效地确定算法当前要合并的2棵具有最小频率的树。一旦2棵具有最小频率的树合并后,产生一棵新的树,其频率为合并的2棵树的频率之和,并将新树插入优先队列Q。经过n-1次的合并后,优先队列中只剩下一棵树,即所要求的树T。

构造过程如图-2所示:
图-2 哈夫曼树构造过程
图-2 哈夫曼树构造过程

三、结果与分析

本实验以算法导论书中的例题为测试用例,来验证算法的正确性。即
这里写图片描述

实验结果截图如下图-7,结果与题目描述中给出的变长代码字一样:
这里写图片描述
图-7 实验结果截图

四、实验总结

1、实验结果与给出的变长代码字一样,算法正确,且哈夫曼编码问题是一个贪心算法问题。采用哈夫曼编码技术可以最小化总的编码长度,从而实现数据文件的压缩存储。
2、构造好哈夫曼树后,可用排列树回溯法来打印哈夫曼编码,即遇到左子树向左走,vector添加记录0;遇到右子树向右走,vector添加记录1;走到叶子节点并打印出叶节点的编码后回溯,同时往上退一层,则vector弹出一个值。如此不断回溯下去,即可打印所有字符编码。


五、源代码(C++)

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;//Huffman树的节点类
typedef struct Node
{char value;               //结点的字符值   int weight;               //结点字符出现的频度Node *lchild,*rchild;     //结点的左右孩子
}Node;//自定义排序规则,即以vector中node结点weight值升序排序
bool ComNode(Node *p,Node *q)
{return p->weight<q->weight;
}//构造Huffman树,返回根结点指针
Node* BuildHuffmanTree(vector<Node*> vctNode)
{while(vctNode.size()>1)                            //vctNode森林中树个数大于1时循环进行合并{sort(vctNode.begin(),vctNode.end(),ComNode);   //依频度高低对森林中的树进行升序排序Node *first=vctNode[0];    //取排完序后vctNode森林中频度最小的树根Node *second=vctNode[1];   //取排完序后vctNode森林中频度第二小的树根Node *merge=new Node;      //合并上面两个树merge->weight=first->weight+second->weight;merge->lchild=first;merge->rchild=second;vector<Node*>::iterator iter;iter=vctNode.erase(vctNode.begin(),vctNode.begin()+2);    //从vctNode森林中删除上诉频度最小的两个节点first和secondvctNode.push_back(merge);                                 //向vctNode森林中添加合并后的merge树}return vctNode[0];            //返回构造好的根节点
}//用回溯法来打印编码
void PrintHuffman(Node *node,vector<int> vctchar)
{if(node->lchild==NULL && node->rchild==NULL){//若走到叶子节点,则迭代打印vctchar中存的编码cout<<node->value<<": ";for(vector<int>::iterator iter=vctchar.begin();iter!=vctchar.end();iter++)cout<<*iter;cout<<endl;return;}else{vctchar.push_back(1);     //遇到左子树时给vctchar中加一个1PrintHuffman(node->lchild,vctchar);vctchar.pop_back();       //回溯,删除刚刚加进去的1vctchar.push_back(0);     //遇到左子树时给vctchar中加一个0PrintHuffman(node->rchild,vctchar);vctchar.pop_back();       //回溯,删除刚刚加进去的0}
}int main()
{cout<<"************ Huffman编码问题 ***************"<<endl;cout<<"请输入要编码的字符,并以空格隔开(个数任意):"<<endl;vector<Node*> vctNode;        //存放Node结点的vector容器vctNodechar ch;                      //临时存放控制台输入的字符while((ch=getchar())!='\n'){if(ch==' ')continue;      //遇到空格时跳过,即没输入一个字符空一格空格Node *temp=new Node;temp->value=ch;temp->lchild=temp->rchild = NULL;vctNode.push_back(temp);  //将新的节点插入到容器vctNode中}cout<<endl<<"请输入每个字符对应的频度,并以空格隔开:"<<endl;for(int i=0;i<vctNode.size();i++)cin>>vctNode[i]->weight;Node *root = BuildHuffmanTree(vctNode);   //构造Huffman树,将返回的树根赋给rootvector<int> vctchar;cout<<endl<<"对应的Huffman编码如下:"<<endl;PrintHuffman(root,vctchar);system("pause");
}

这篇关于《算法导论》实验四:哈夫曼(Huffman)编码问题(C++实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920183

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函