OpenCV从入门到精通实战(五)——dnn加载深度学习模型

2024-04-19 06:28

本文主要是介绍OpenCV从入门到精通实战(五)——dnn加载深度学习模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程。
下面是程序的主要步骤和对应的实现代码总结:

1. 导入必要的工具包和模型

程序开始先导入需要的库osnumpycv2,同时导入utils_paths模块,后者用于处理图像路径。接着,读取Caffe模型和配置文件,这些文件提供了使用预训练深度学习模型进行图像分类的基础。

import utils_paths
import numpy as np
import cv2net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt", "bvlc_googlenet.caffemodel")

2. 读取图像文件

使用utils_paths.list_images函数遍历指定目录,获取所有图像文件的路径。

imagePaths = sorted(list(utils_paths.list_images("images/")))

3. 图像预处理

选择路径列表中的第一个图像进行读取,调整其大小以符合模型输入需求,并通过cv2.dnn.blobFromImage创建适合Caffe模型的输入blob。

image = cv2.imread(imagePaths[0])
resized = cv2.resize(image, (224, 224))
blob = cv2.dnn.blobFromImage(resized, 1, (224, 224), (104, 117, 123))

4. 模型预测和结果展示

设定模型输入,执行前向传播获取预测结果,找出概率最高的类别,并在图像上显示预测标签和概率。

net.setInput(blob)
preds = net.forward()
idx = np.argsort(preds[0])[::-1][0]
text = "Label: {}, {:.2f}%".format(classes[idx], preds[0][idx] * 100)
cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Image", image)
cv2.waitKey(0)

5. 批量图像处理

对多个图像执行上述步骤,生成多图像的输入blob,并对每个图像执行预测,展示结果。

images = []
for p in imagePaths[1:]:image = cv2.imread(p)image = cv2.resize(image, (224, 224))images.append(image)blob = cv2.dnn.blobFromImages(images, 1, (224, 224), (104, 117, 123))
net.setInput(blob)
preds = net.forward()for (i, p) in enumerate(imagePaths[1:]):image = cv2.imread(p)idx = np.argsort(preds[i])[::-1][0]text = "Label: {}, {:.2f}%".format(classes[idx], preds[i][idx] * 100)cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.imshow("Image", image)cv2.waitKey(0)

完整代码

utils_paths.py

import osimage_types = (".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff")def list_images(basePath, contains=None):# return the set of files that are validreturn list_files(basePath, validExts=image_types, contains=contains)def list_files(basePath, validExts=None, contains=None):# loop over the directory structurefor (rootDir, dirNames, filenames) in os.walk(basePath):# loop over the filenames in the current directoryfor filename in filenames:# if the contains string is not none and the filename does not contain# the supplied string, then ignore the fileif contains is not None and filename.find(contains) == -1:continue# determine the file extension of the current fileext = filename[filename.rfind("."):].lower()# check to see if the file is an image and should be processedif validExts is None or ext.endswith(validExts):# construct the path to the image and yield itimagePath = os.path.join(rootDir, filename)yield imagePath

blob_from_images.py

# 导入工具包
import utils_paths
import numpy as np
import cv2# 标签文件处理
rows = open("synset_words.txt").read().strip().split("\n")
classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows]# Caffe所需配置文件
net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt","bvlc_googlenet.caffemodel")# 图像路径
imagePaths = sorted(list(utils_paths.list_images("images/")))# 图像数据预处理
image = cv2.imread(imagePaths[0])
resized = cv2.resize(image, (224, 224))
# image scalefactor size mean swapRB 
blob = cv2.dnn.blobFromImage(resized, 1, (224, 224), (104, 117, 123))
print("First Blob: {}".format(blob.shape))# 得到预测结果
net.setInput(blob)
preds = net.forward()# 排序,取分类可能性最大的
idx = np.argsort(preds[0])[::-1][0]
text = "Label: {}, {:.2f}%".format(classes[idx],preds[0][idx] * 100)
cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)# 显示
cv2.imshow("Image", image)
cv2.waitKey(0)# Batch数据制作
images = []# 方法一样,数据是一个batch
for p in imagePaths[1:]:image = cv2.imread(p)image = cv2.resize(image, (224, 224))images.append(image)# blobFromImages函数,注意有s
blob = cv2.dnn.blobFromImages(images, 1, (224, 224), (104, 117, 123))
print("Second Blob: {}".format(blob.shape))# 获取预测结果
net.setInput(blob)
preds = net.forward()
for (i, p) in enumerate(imagePaths[1:]):image = cv2.imread(p)idx = np.argsort(preds[i])[::-1][0]text = "Label: {}, {:.2f}%".format(classes[idx],preds[i][idx] * 100)cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)cv2.imshow("Image", image)cv2.waitKey(0)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

以下是后续代码的改进:

6. 异常处理和验证

在处理文件读取和图像处理时,加入异常处理可以避免在文件不存在或损坏时程序崩溃。

try:image = cv2.imread(imagePath)if image is None:raise ValueError("无法读取图像: {}".format(imagePath))resized = cv2.resize(image, (224, 224))
except Exception as e:print("处理图像时发生错误: ", e)

7. 性能优化

对于图像处理和预测,尤其是批量操作时,可以通过并行处理技术来加速这些操作。例如,使用Python的concurrent.futures模块进行并行读取和预处理图像。

from concurrent.futures import ThreadPoolExecutordef process_image(path):image = cv2.imread(path)image = cv2.resize(image, (224, 224))return imagewith ThreadPoolExecutor() as executor:images = list(executor.map(process_image, imagePaths))

8. 动态输入和命令行工具

将脚本转换为可接受命令行参数的形式,使其更灵活,能够通过命令行直接指定图片路径、模型文件等。

import argparseparser = argparse.ArgumentParser(description='图像分类预测')
parser.add_argument('--image_dir', type=str, required=True, help='图像目录路径')
parser.add_argument('--model', type=str, required=True, help='模型文件路径')
args = parser.parse_args()imagePaths = sorted(list(utils_paths.list_images(args.image_dir)))
net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt", args.model)

9. GUI界面

为了使程序更友好,可以开发一个基于图形用户界面的应用,允许用户通过图形界面选择图像和观看结果,而不是仅限于命令行。

import tkinter as tk
from tkinter import filedialogdef load_image():path = filedialog.askopenfilename()return cv2.imread(path), pathroot = tk.Tk()
load_button = tk.Button(root, text='加载图像', command=load_image)
load_button.pack()
root.mainloop()

初始代码 下载地址 dnn加载深度学习模型

这篇关于OpenCV从入门到精通实战(五)——dnn加载深度学习模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916806

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C

springboot 加载本地jar到maven的实现方法

《springboot加载本地jar到maven的实现方法》如何在SpringBoot项目中加载本地jar到Maven本地仓库,使用Maven的install-file目标来实现,本文结合实例代码给... 在Spring Boothttp://www.chinasem.cn项目中,如果你想要加载一个本地的ja

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

最好用的WPF加载动画功能

《最好用的WPF加载动画功能》当开发应用程序时,提供良好的用户体验(UX)是至关重要的,加载动画作为一种有效的沟通工具,它不仅能告知用户系统正在工作,还能够通过视觉上的吸引力来增强整体用户体验,本文给... 目录前言需求分析高级用法综合案例总结最后前言当开发应用程序时,提供良好的用户体验(UX)是至关重要