OpenCV基本图像处理操作(八)——光流估计

2024-04-18 04:12

本文主要是介绍OpenCV基本图像处理操作(八)——光流估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

光流估计

光流估计是一种用于检测图像序列中像素点运动的技术。它基于这样的假设:在连续的视频帧之间,一个物体的移动会导致像素强度的连续性变化。通过分析这些变化,光流方法可以估计每个像素点的运动速度和方向。

光流估计通常用于多种应用,包括:

  1. 运动检测:在视频监控中识别移动物体。
  2. 场景重建:帮助理解三维场景的结构。
  3. 视频压缩:通过预测帧间的移动减少需要存储的数据量。
  4. 增强现实:实时跟踪现实世界中的对象和场景。

实现光流估计的方法有很多,包括基于梯度的方法(如Lucas-Kanade方法)和基于匹配的方法(如块匹配)。这些方法各有优缺点,选择哪种方法取决于应用的具体需求和可用的计算资源。
光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。

特点
  • 亮度恒定:同一点随着时间的变化,其亮度不会发生改变。

  • 小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。

  • 空间一致:一个场景上邻近的点投影到图像上也是邻近点,且邻近点速度一致。因为光流法基本方程约束只有一个,而要求x,y方向的速度,有两个未知变量。所以需要连立n多个方程求解。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

cv2.calcOpticalFlowPyrLK():

参数:

  • prevImage 前一帧图像

  • nextImage 当前帧图像

  • prevPts 待跟踪的特征点向量

  • winSize 搜索窗口的大小

  • maxLevel 最大的金字塔层数

返回:

  • nextPts 输出跟踪特征点向量

  • status 特征点是否找到,找到的状态为1,未找到的状态为0

import numpy as np
import cv2cap = cv2.VideoCapture('test.avi')# 角点检测所需参数
feature_params = dict( maxCorners = 100,qualityLevel = 0.3,minDistance = 7)# lucas kanade参数
lk_params = dict( winSize  = (15,15),maxLevel = 2)# 随机颜色条
color = np.random.randint(0,255,(100,3))# 拿到第一帧图像
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# 返回所有检测特征点,需要输入图像,角点最大数量(效率),品质因子(特征值越大的越好,来筛选)
# 距离相当于这区间有比这个角点强的,就不要这个弱的了
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)# 创建一个mask
mask = np.zeros_like(old_frame)while(True):ret,frame = cap.read()frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 需要传入前一帧和当前图像以及前一帧检测到的角点p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)# st=1表示good_new = p1[st==1]good_old = p0[st==1]# 绘制轨迹for i,(new,old) in enumerate(zip(good_new,good_old)):a,b = new.ravel().astype(int)c,d = old.ravel().astype(int)mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)img = cv2.add(frame,mask)cv2.imshow('frame',img)k = cv2.waitKey(150) & 0xffif k == 27:break# 更新old_gray = frame_gray.copy()p0 = good_new.reshape(-1,1,2)cv2.destroyAllWindows()
cap.release()

在这里插入图片描述

这篇关于OpenCV基本图像处理操作(八)——光流估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913732

相关文章

MySQL 中的 LIMIT 语句及基本用法

《MySQL中的LIMIT语句及基本用法》LIMIT语句用于限制查询返回的行数,常用于分页查询或取部分数据,提高查询效率,:本文主要介绍MySQL中的LIMIT语句,需要的朋友可以参考下... 目录mysql 中的 LIMIT 语句1. LIMIT 语法2. LIMIT 基本用法(1) 获取前 N 行数据(

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Linux ls命令操作详解

《Linuxls命令操作详解》通过ls命令,我们可以查看指定目录下的文件和子目录,并结合不同的选项获取详细的文件信息,如权限、大小、修改时间等,:本文主要介绍Linuxls命令详解,需要的朋友可... 目录1. 命令简介2. 命令的基本语法和用法2.1 语法格式2.2 使用示例2.2.1 列出当前目录下的文

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处