Leetcode: NO.486 预测赢家 深度优先+动态规划

2024-04-17 20:08

本文主要是介绍Leetcode: NO.486 预测赢家 深度优先+动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例 1:输入:[1, 5, 2]
输出:False
解释:一开始,玩家1可以从12中进行选择。
如果他选择 2(或者 1 ),那么玩家 2 可以从 1(或者 2 )和 5 中进行选择。如果玩家 2 选择了 5 ,那么玩家 1 则只剩下 1(或者 2 )可选。
所以,玩家 1 的最终分数为 1 + 2 = 3,而玩家 25 。
因此,玩家 1 永远不会成为赢家,返回 False 。
示例 2:输入:[1, 5, 233, 7]
输出:True
解释:玩家 1 一开始选择 1 。然后玩家 2 必须从 57 中进行选择。无论玩家 2 选择了哪个,玩家 1 都可以选择 233 。最终,玩家 1234 分)比玩家 212 分)获得更多的分数,所以返回 True,表示玩家 1 可以成为赢家。
提示:1 <= 给定的数组长度 <= 20.
数组里所有分数都为非负数且不会大于 10000000 。
如果最终两个玩家的分数相等,那么玩家 1 仍为赢家。

链接:https://leetcode-cn.com/problems/predict-the-winner

解题记录

设定step[left][right]为在left~right这段区间中玩家1和玩家2的差值,当前玩家1选着

  • 通过递归,选左边为leftScore = nums[left] - dfs(left+1, right);
  • 选右边rightScore = nums[right] - dfs(left, right-1);
  • 最优为差值最大
/*** @author: ffzs* @Date: 2020/9/1 上午7:10*/
public class Solution {int[][] step;int[] nums;public boolean PredictTheWinner(int[] nums) {int n = nums.length;step = new int[n][n];this.nums = nums;for (int[] ints : step) {Arrays.fill(ints, Integer.MIN_VALUE);}return dfs(0, n-1) >= 0;}private int dfs (int left, int right) {if (left > right) return 0;if (step[left][right] != Integer.MIN_VALUE) return step[left][right];int leftScore = nums[left] - dfs(left+1, right);int rightScore = nums[right] - dfs(left, right-1);int score = Math.max(leftScore, rightScore);step[left][right] = score;return score;}
}

在这里插入图片描述

  • 递归是正着想,机器倒着做
  • 动态规划化是倒着想,机器正着做
/*** @author: ffzs* @Date: 2020/9/1 上午8:37*/public class Solution2 {public boolean PredictTheWinner(int[] nums) {int n = nums.length;int[][] dp = new int[n][n];// 先填上分界线for (int i = 0; i < n; i++) dp[i][i] = nums[i];// 因为要获得 ij ,因此需要优先获取i+1,j-1等,所以从后向前获取for (int i = n-2; i >= 0; i--) {for (int j = i+1; j < n; j++) {dp[i][j] = Math.max((nums[i] - dp[i+1][j]), (nums[j] - dp[i][j-1]));}}return dp[0][n-1] >= 0;}
}

在这里插入图片描述

这篇关于Leetcode: NO.486 预测赢家 深度优先+动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/912722

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷