基于少样本学习EEG/SEEG数据癫痫预警和脑电识别

2024-04-17 13:58

本文主要是介绍基于少样本学习EEG/SEEG数据癫痫预警和脑电识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近的三篇文章都中了。因此有时间来整理之前的工作;       

立体脑电数据包含了大脑癫痫电信号,具有高信噪比,高采样率,可以进行病灶定位等特点。因此对立体脑电进行数据分析和数据挖掘具有很大的医学研究价值。但是目前基于立体脑电信号数据挖掘工作还较少,尤其是基于深度学习等方法的工作。立体脑电采集成本较高,受试者较少,所以需要大量训练数据的传统的神经网络分类模型并不能很好解决立体脑电分类任务。同时,立体脑电数据的电极位置不固定,头皮脑电的数据预处理方法不适用于立体脑电数据。因此从立体脑电数据出发,如何进行的数据预处理,利用立体脑电多信道信息,构建出泛化能力较好的深度学习网络对立体脑电癫痫信号识别是一大挑战。

在实验中我们会经常发现,在训练集上效果较好的模型在新的病人身上的性能并不好。这是因为脑电信号带有很明显的个体差异;这种差异会干扰模型的判别。少样本学习是很好的一个途径去解决量较少的情况。少样本学习通过构造众多的数据集,可以提高模型的泛化能力。

少样本学习的核心思想是学习多个任务的先验知识,使模型适用于有监督的已知少量样本标签的新任务。Vinyals等人采用了基于深度神经网络的度量学习的思想(Matching networks),将一个标记好的数据集映射到未标记的数据集上实现模型的快速拟合。Snell等人学习到一个度量空间(Prototypical networks),通过计算每个类的原型的表示距离从而对其分类。Sung等人则构建一个端到端的关系网络(Relation Network),它是基于深度学习的度量网络,关系网络可以通过计算查询样本与每一个新的类别样本之间的关系得分来对新的类别进行分类,从而无需整体地更新整个网络。Finn 等人提出了一种模型无关的少样本学习方法(Meta Learning),该方法目标是针对于各种学习任务来训练模型,通过二次的梯度更新策略,通过少量已知标签样本就可以适应于新的学习任务。

如下是两个人不同的SEEG数据信道分布图;之后我会介绍如何合理的处理这种信道数据图。

我们通过特定的方法来排列信道构成矩阵,然后通过切割矩阵来获得数据片段。这个数据片段就是模型的输入,首先对于每一类的数据可以通过VAE编解码,这样能够提取到每一类的脑电数据的特征,然后通过水机采样的方法来构建任务集。再结合MAML(Model Agnostic Meat Lrarning)来实现模型的分类,这样做的好处能够借助于变分自编码器和少样本学习提高模型的泛化能力。

具体的结构图如下;

具体的算法如下:

数据集

实验的数据如下,我们采集了5位病人的数据,采用留一法进行验证;

实验的结果如下,可以看到我们的模型取得了最好的结果。

 对提取的特征分成5类进行聚类分析并且可视化如下:

 

 我们在特征分析中发现了模型的性能和某种特征密度相关,如下所示。

 以上就是我论文的内容,改论文已经被American Medical Informatics Association: AMIA录用,论文题目为:Characterizing Brain Signals for Epileptic Pre-ictal Signal Classification。等见刊了大家可以看看论文细节。

 

这篇关于基于少样本学习EEG/SEEG数据癫痫预警和脑电识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911990

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下