代码随想录算法训练营第四十一天| 343. 整数拆分,96.不同的二叉搜索树

本文主要是介绍代码随想录算法训练营第四十一天| 343. 整数拆分,96.不同的二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

343. 整数拆分

题目链接:343. 整数拆分

代码随想录题解:343. 整数拆分

视频讲解:动态规划,本题关键在于理解递推公式!| LeetCode:343. 整数拆分_哔哩哔哩_bilibili

解题思路:

        一眼懵,直接看答案了

看完代码随想录之后的想法 

        前一天的题是由dp[i-2]和dp[i-1],递推出当前结果dp[i]。这题更复杂一些,是要根据dp[0]到dp[i-1],推算dp[i]的结果。

        对于数字i,可以分解为两个数字的和:j和i-j,因此求分解i的乘积,就是求j和分解i-j之后二者的乘积。那么如果dp[i]定义为数字i的最大乘积和,那么对于dp[i],遍历j from 1 to i - 1, 递推公式为求dp[i-j]*j和j * (i - j) 中的最大值。

        为避免重复计算,j最多取到i的一半。

class Solution {public int integerBreak(int n) {int[] dp = new int[n+1];if (n >= 2) dp[2] = 1;for (int i = 3; i <= n; i++) {for (int j = 1; j <= i/2; j++) {dp[i] = Math.max(dp[i], Math.max(j*(i-j), dp[i-j]*j));}}return dp[n];}
}

j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

 还需要注意,初始化的方式是跟着定义走的,如果求的是max(dp[i - j] * dp[j]),为了计算正确,初始化的结果会跟dp[i]定义不符,容易出错。

遇到的困难

        第一次碰到这种题,想不到

96.不同的二叉搜索树 

题目链接:96.不同的二叉搜索树 

代码随想录题解:​​​​​​​96.不同的二叉搜索树 

视频讲解:动态规划找到子状态之间的关系很重要!| LeetCode:96.不同的二叉搜索树_哔哩哔哩_bilibili

解题思路:

        这题跟上面一题有一点类似,同样是要用多个dp[i-j]的值推出dp[i]。

        题目要求用1-n的数字构成不同的二叉搜索树,其实可以分解为,0-j-1的数字构成左子树,j为根节点,j到i构成右子树,那么

dp[i] = \sum_{1}^{i}dp[j-1]*dp[i-j]

        初始化dp[0]=dp[1]=0即可。

class Solution {public int numTrees(int n) {int[] dp = new int[n+1];dp[0] = 1;dp[1] = 1;for (int i = 2; i <= n; i++) {for (int j = 1; j <= i ; j++) {dp[i] += dp[j-1] * dp[i-j];}}return dp[n];}
}

看完代码随想录之后的想法 

        以dp[3]为例

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

关键是看如何去分解,分解后如何正确确定遍历的上下限。

遇到的困难

        一开始写的时候没有想清楚遍历的边界,初始化的时候也有点糊涂,所以错了好几处。要记住按定义初始化dp,然后确定遍历上下界后,最好通过几个举例得到结果,保证边界正确。        

今日收获

        学会了如何用分解的方法使用dp,难度提升了很多。

这篇关于代码随想录算法训练营第四十一天| 343. 整数拆分,96.不同的二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910764

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python