OpenAI发布具有1750亿个参数的GPT-3 AI语言模型

2024-04-16 17:08

本文主要是介绍OpenAI发布具有1750亿个参数的GPT-3 AI语言模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:https://arxiv.org/abs/2005.14165
guthub:https://github.com/openai/gpt-3

OpenAI的一组研究人员最近发表了一篇论文,描述了GPT-3,这是一种具有1,750亿个参数的自然语言深度学习模型,比以前的版本GPT-2高100倍。该模型经过了将近0.5万亿个单词的预训练,并且在不进行微调的情况下,可以在多个NLP基准上达到最先进的性能。
在这里插入图片描述

在arXiv上发表的论文中,由30多位合著者组成的团队描述了该模型和几个实验。研究人员的目标是生产一种NLP系统,该系统可以很好地执行各种任务,而几乎不需要微调,并且以前的工作表明较大的模型可能是解决方案。为了检验该假设,研究小组将其先前模型GPT-2的大小从15亿个参数增加到1750亿个。为了进行培训,团队收集了几个数据集,包括Common Crawl数据集和英语Wikipedia。该模型是根据多个NLP基准进行评估的,匹配了“已关闭”问题解答任务的最新性能,并为LAMBADA创造了新记录 语言建模任务。
在这里插入图片描述
OpenAI去年成为GPT-2的头条新闻,由于“对技术的恶意应用的担忧”,他们决定不发布经过训练的模型的15亿参数版本。GPT-2是基于Transformer架构的许多大型NLP模型之一。这些模型 使用自我监督学习在大型文本语料库(例如内容Wikipedia)上进行了预训练。在这种情况下,不是使用包含输入与预期输出配对的数据集的模型,而是为模型提供了带有单词“ masked”的文本序列,并且必须学习根据周围的上下文预测被屏蔽的单词。在进行此预训练之后,然后使用带有标签的基准数据集对模型进行微调,以用于特定的NLP任务,例如问题解答。

但是,研究人员发现,即使不进行微调,预训练的模型也表现良好,特别是对于在大型数据集上进行预训练的大型模型。今年早些时候,OpenAI发表了一篇论文,假定Transformer模型的几个“ 缩放定律 ”。根据来自多个不同基于Transformer的模型的性能数据,OpenAI得出结论,模型性能(在这种情况下,是测试数据集的交叉熵损失)与模型参数的数量,数据集的大小具有幂律关系。 ,以及用于训练的计算量。增加这三个变量将因此提高性能。

为了进行预培训,团队收集了一个由Common Crawl,WebText,英语Wikipedia和两本书集组成的数据集。为了提高数据质量,研究人员过滤了“常见爬网”以消除冗余。由于Common Crawl是从互联网上抓取的,因此它可能包含用于基准评估的实际测试数据,这会“污染”培训。该小组确实试图消除这种污染。但是,他们承认:

不幸的是,过滤中的错误导致我们忽略了一些重叠,并且由于训练的成本,重新训练模型是不可行的。

该团队使用这些数据来训练该模型的八个版本,范围从1.25亿个参数到完整的1,750亿个参数。在许多类别的数十个NLP基准上对模型进行了评估,在许多情况下,其性能均接近或高于最新水平。为了根据新闻文章生成任务评估模型,团队使用了Amazon Mechanical Turk聘请人类法官来猜测一对文章中哪篇是真实的,哪些是由GPT-3生成的。人类仅在52%的时间内选择了真实的商品;从本质上讲,人类在选择真实商品方面并不比硬币翻转更好。该团队还讨论了该模型的一些弱点。例如,在文本合成中,“ GPT-3样本有时仍会在文档级别进行语义上的重复,在足够长的段落中开始失去连贯性,相互矛盾,并偶尔包含非语义的句子或段落。” 该模型还很难解决“常识物理”问题,例如“如果我将奶酪放进冰箱,它会融化吗?”

NLP研究社区的几位成员在Twitter上评论了该模型的大小。Alchemy API创始人艾略特·特纳(Elliot Turner)推测,训练最大模型的成本可能“接近1200万美元”。Mark Riedl教授对模型尺寸与性能之间的联系提出了解释:

一种假设是,GPT-3具有如此众多的参数(训练的令牌数量的一半),以至于它开始像存储网络一样工作。

与GPT-2一样,OpenAI尚未发布经过​​训练的模型或代码,尽管存在一个GitHub存储库,其中包含一些测试数据集以及该模型生成的文本样本的集合。

这篇关于OpenAI发布具有1750亿个参数的GPT-3 AI语言模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909395

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek