[ROS 系列学习教程] 建模与仿真 - URDF 语法介绍

2024-04-16 09:20

本文主要是介绍[ROS 系列学习教程] 建模与仿真 - URDF 语法介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ROS 系列学习教程(总目录)

本文目录

  • 一、robot标签
  • 二、link标签
  • 三、joint标签

URDF文件中使用XML格式描述的机器人模型,下面介绍URDF的XML标签。

一、robot标签

机器人描述文件中的根元素必须是robot,所有其他元素必须封装在其中。

属性

  • name:主文件必须具有名称属性。 name属性在包含的文件中是可选的。如果在附加包含文件中指定属性名称,则其值必须与主文件中的值相同。

子标签

标签描述
link连杆
joint关节,描述连杆之间的运动关系
gazebo用于描述在gazebo中模拟的信息

示例

<robot name="mbot"><link> ... </link><joint> ... </joint>
</robot>

二、link标签

link 元素用于描述具有惯性、视觉特征和碰撞属性的刚体。

在这里插入图片描述

属性

  • name:link的名称。

子标签

注:<…> 代表标签,xyz 等代表属性,++ 等代表下一级。

标签或属性描述示例
<inertial>描述连杆的质量、质心位置及其中心惯性属性(如果未指定,则默认为零质量和零惯性)
+ <origin>该姿态(平移、旋转)描述了连杆质心坐标系 C 相对于连杆坐标系 L 的位置和方向。
++ xyz从 Lo(连杆坐标系原点)到 Co(连杆质心)的位置向量,表示为 xL̂x + yL̂y + zL̂z,其中L̂x、L̂y、L̂z是连杆坐标系 L 的正交单位向量。默认为零向量2.0 0 -3
++ rpy质心 C 的单位向量 (Ĉx, Ĉy, Ĉz) 相对于连杆系 L的方向,表示为以弧度表示的欧拉旋转 (rpy) 序列。注意:(Ĉx, Ĉy, Ĉz) 不需要与连杆的惯性主轴对齐。0.1 1 0.5
+ <mass>连杆的质量,由该元素的value属性表示
++ value质量数值,单位:kg2.5
+ <inertia>对于固定在质心坐标系 C 上的单位向量 (Ĉx, Ĉy, Ĉz) ,该连杆的惯性矩ixx、iyy、izz以及关于 Co(连杆质心)的惯性积 ixy、ixz、iyz。
++ ixx
++ iyy
++ izz
惯性矩
++ ixy
++ ixz
++ iyz
惯性积
<visual>连杆的视觉属性。该元素指定对象的形状(box、cylinder等)以用于可视化。**注意:**同一个连杆可以存在多个 <visual> 实例,连杆的最终形状由他们定义的几何图形融合决定。
+ name指定连杆几何图形的名称。用于外部引用连杆几何形状。 可选
+ <origin>视觉元素的参考系相对于连杆参考系的位姿。可选
++ xyz平移
++ rpy固定轴旋转角
+ <geometry>视觉对象的几何形状,选择如下之一
++ <box>立方体,原点位于几何中心
+++ size长宽高,单位:m
++ <cylinder>圆柱体,原点位于几何中心
+++ length高,单位:m
+++ radius半径,单位:m
++ <sphere>球体,,原点位于几何中心
+++ radius半径,单位:m
++ <mesh>外部导入的网格模型
+++ filename模型文件路径,建议使用 package://<packagename>/<path> 格式,以便可以自动查找特定包下的模型文件。文件推荐 .dae 格式。
+ <material>视觉元素的材质。允许在 robot 元素中枚举所需材质,然后在 link 元素中按名称引用。
++ name名称
++ <color>颜色
+++ rgba红绿蓝和透明度,数值范围为 [0,1]0.2 0 0.8 1
+++ <texture>外部导入的外观图片
+++ filename文件路径
<collision>连杆的碰撞属性,注意:这可能与连杆的视觉属性不同,例如,通常使用更简单的碰撞模型来减少计算时间。 同一连杆可以存在多个 <collision> 实例。连杆的最终碰撞模型由他们定义的几何图形融合决定。
+ name指定连杆碰撞模型的名称。用于外部引用。 可选
+ <origin>同<visual>的<origin>
+ <geometry>同<visual>的<geometry>

示例

<robot name="physics"><material name="blue"><color rgba="0 0 0.8 1"/></material><material name="black"><color rgba="0 0 0 1"/></material><material name="white"><color rgba="1 1 1 1"/></material><link name="base_link"><visual><geometry><cylinder length="0.6" radius="0.2"/></geometry><material name="blue"/></visual><collision><geometry><cylinder length="0.6" radius="0.2"/></geometry></collision><inertial><mass value="10"/><inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/></inertial></link></robot>

三、joint标签

joint 描述关节的运动学和动力学属性,并指定了关节的安全极限。

在这里插入图片描述

属性

  • name:指定关节的唯一名称(必选)。
  • type:指定关节的类型,可以是以下之一:
关节类型描述
revolute沿轴转动的铰链关节,其范围由 lower 和 upper 指定。见 limit 标签
continuous绕轴旋转的连续铰链关节,没有上下限。
prismatic沿轴滑动的滑动关节,其范围由 lower 和 upper 指定。
fixed这并不是真正的关节,因为它不能移动。所有自由度均被锁定。这种类型的关节不需要<axis>、<calibration>、<dynamics>、<limits>或<safety_controller>等标签。
floating该关节允许所有 6 个自由度的运动。
planar该关节允许在垂直于轴的平面上运动。

子标签

标签或属性描述示例
<origin>从父连杆到子连杆的转换。关节位于子连杆的原点,如上图。可选
+ xyzx、y、z 偏移,单位:m2.0 0 -3
+ rpy绕固定轴的旋转:首先绕x滚动,然后绕y俯仰,最后绕z偏航。单位:弧度0.1 1 0.5
<parent>指定关节的父连杆,必选
+ link父连杆名称
<child>指定关节的子连杆,必选
+ link子连杆名称
<axis>关节框架中指定的关节轴。这是旋转关节的旋转轴、滑动关节的平移轴以及平面关节的表面法线。该轴在关节参考系中指定。固定关节和浮动关节不使用该字段。默认为 (1,0,0)
+ xyz轴向量,应该被归一化。
<calibration>关节的参考位置,用于校准关节的绝对位置。
+ rising当关节正方向移动时,该参考位置将触发上升沿。
+ falling当关节正方向移动时,该参考位置将触发下降沿。
<dynamics>指定关节的物理属性
+ damping关节的物理阻尼值(对于滑动关节,以牛顿秒每米[ Ns / m ] 为单位;对于旋转关节,以牛顿米秒每弧度[ Nms / rad ] 为单位)
+ friction关节的物理静摩擦值(对于滑动关节,单位为牛顿[ N ];对于旋转关节,单位为牛顿米[ Nm ])
<limit>安全限制(仅旋转关节和滑动关节需要)
+ lower指定关节下限的属性(对于旋转关节以弧度为单位,对于滑动关节以米为单位)。如果关节是连续的则省略。可选
+ upper指定关节上限的属性(对于旋转关节以弧度为单位,对于滑动关节以米为单位)。如果关节是连续的则省略。可选
+ effort限制关节最大受力($F_{real}
+ velocity限制关节最大速度(对于旋转关节,以弧度每秒[ rad / *s ] 为单位,对于棱柱关节,以米每秒[ m / s ] 为单位),必选
<mimic>该标签用于指定定义的关节模仿另一个现有关节。该关节的值可以计算为value = multiplier * other_joint_value + offset。可选
+ joint指定要模仿的关节的名称,必选
+ multiplier指定上述公式中的乘法因子,可选
+ offset指定要在上述的公式中添加的偏移量。默认为 0(旋转关节为弧度,滑动关节为米)
<safety_controller>安全控制器,可选
+ soft_lower_limit指定安全控制器开始限制关节位置的下边界。该限制需要大于 limit 的 lower
+ soft_upper_limit指定安全控制器开始限制关节位置的上边界。该限制需要小于 limit 的 upper
+ k_position指定位置和速度限制之间的关系
+ k_velocity指定受力和速度限制之间的关系

示例

<joint name="my_joint" type="floating"><origin xyz="0 0 1" rpy="0 0 3.1416"/><parent link="link1"/><child link="link2"/><calibration rising="0.0"/><dynamics damping="0.0" friction="0.0"/><limit effort="30" velocity="1.0" lower="-2.2" upper="0.7" /><safety_controller k_velocity="10" k_position="15" soft_lower_limit="-2.0" soft_upper_limit="0.5" />
</joint>

这篇关于[ROS 系列学习教程] 建模与仿真 - URDF 语法介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908398

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom