langchain 链式写法-使用本地 embedding 模型,Faiss 检索

2024-04-15 20:36

本文主要是介绍langchain 链式写法-使用本地 embedding 模型,Faiss 检索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

示例代码1

示例代码2


示例代码1

使用本地下载的 embedding 模型去做 embedding,然后从中查相似的

import os
from dotenv import load_dotenv
from langchain_community.llms import Tongyi
load_dotenv('key.env')  # 指定加载 env 文件
key = os.getenv('DASHSCOPE_API_KEY')  # 获得指定环境变量
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量
model = Tongyi(temperature=1)from langchain_core.prompts import ChatPromptTemplate, PromptTemplate, format_document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.vectorstores.faiss import FAISS
from langchain_community.document_loaders import ArxivLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings# 加载 arXiv 上的论文《ReAct: Synergizing Reasoning and Acting in Language Models》
loader = ArxivLoader(query="2210.03629", load_max_docs=1)
docs = loader.load()# 把文本分割成 200 字一组的切片
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=20)
chunks = text_splitter.split_documents(docs)embedding = HuggingFaceEmbeddings(model_name='bge-small-zh-v1.5')# 构建 FAISS 向量存储和对应的 retriever
vs = FAISS.from_documents(chunks[:10], embedding)
# vs.similarity_search("What is ReAct")
retriever = vs.as_retriever()# 构建 Document 转文本段落的工具函数
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
):doc_strings = [format_document(doc, document_prompt) for doc in docs]return document_separator.join(doc_strings)# 准备 Model I/O 三元组
template = """Answer the question based only on the following context:
{context}Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)# 构建 RAG 链
chain = ({"context": retriever | _combine_documents,"question": RunnablePassthrough()  # 直接作为 question 的值,不做任何操作}| prompt| model| StrOutputParser()
)
print(chain.invoke("什么是 ReAct?"))

示例代码2

txt 有多行,我的这份数据有 67 行,样例如下:

字段1\t值1\n

字段2\t值2\n

...

从中先检索最相似的,在传给大模型去选择,减少一次性传传入太多,不相关得到信息

import os
from dotenv import load_dotenv
from langchain_community.llms import Tongyi
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate, format_document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter# 使用通义千问 api
load_dotenv('key.env')  # 指定加载 env 文件
key = os.getenv('DASHSCOPE_API_KEY')  # 获得指定环境变量
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量
model = Tongyi(temperature=1)# 检索的文本
content = '采用强酸型阳离子树脂为交换剂的离子交换柱,和经组氨酸基团修饰的强碱型阴离子树脂为交换剂的离子交换层析柱串联,以氯化钠溶液为洗脱剂,对透明质酸粗品进行分离和纯化.得到的透明质酸精品的蛋白质含量低于0.075%,平均分子量大于9.41×105,纯化收率为58%~61%.并对洗脱剂的流速、浓度、pH等条件进行比较,确定了最佳洗脱条件.'# 加载外部数据
filepath = 'data/专业描述.txt'
raw_documents = TextLoader(filepath, encoding='utf8').load()# 按行分割块
text_splitter = CharacterTextSplitter(chunk_size=100,chunk_overlap=20,separator="\n",length_function=len,is_separator_regex=True,
)
documents = text_splitter.split_documents(raw_documents)# 加载本地 embedding 模型
embedding = HuggingFaceEmbeddings(model_name='bge-small-zh-v1.5')# 判断向量数据库是否已经创建,创建则加载,否则创建
embedding_db = "./faiss_index"
if os.path.exists(embedding_db):print('加载已存在向量数据库')db = FAISS.load_local(embedding_db, embedding, allow_dangerous_deserialization=True)
else:print('创建向量数据库')# 创建向量数据库,把外部数据向量化,保存为数据库到本地db = FAISS.from_documents(documents, embedding)# 保存db.save_local("./faiss_index")# 构建检索器检索,mmr 检索
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 10})  # 构建检索器# 构建检索回来后的处理函数
# 构建 Document 转文本段落的工具函数
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(docs, document_prompt=DEFAULT_DOCUMENT_PROMPT):doc_strings = [format_document(doc, document_prompt) for doc in docs]docs = [d.split('\t')[0] for d in doc_strings]return docs# 准备 Model I/O 三元组
template = """找最相关的专业。请根据以下已知条件:
- 描述:{content}
- 专业列表:{labels}请遵循以下决策规则:
- 给出的专业必须来自于专业列表中列出的专业。
- 仔细分析描述中出现的专业名词,判断它们是否指向特定的专业。
- 让我们一步一步来思考请直接回答你认为最相关的专业名称,无需解释说明。
请按照以下格式回答:
- 输出:[专业]注意:
- 您必须给出回答,不能拒绝回答问题。
- 回答必须简明扼要,不能超出问题所涉及的范围。
"""
prompt = ChatPromptTemplate.from_template(template)# 构建 RAG 链
chain = ({"labels": retriever | _combine_documents,  # 把检索回来结果给 _combine_documents 函数处理,提取内容"content": RunnablePassthrough()  # 直接作为 content 的值,不做任何操作}| prompt| model| StrOutputParser()
)
print(chain.invoke(content))

这篇关于langchain 链式写法-使用本地 embedding 模型,Faiss 检索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906854

相关文章

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QUndoView控件的具体使用

《Qt中QUndoView控件的具体使用》QUndoView是Qt框架中用于可视化显示QUndoStack内容的控件,本文主要介绍了Qt中QUndoView控件的具体使用,具有一定的参考价值,感兴趣的... 目录引言一、QUndoView 的用途二、工作原理三、 如何与 QUnDOStack 配合使用四、自

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指