科大讯飞星火开源大模型iFlytekSpark-13B GPU版部署方法

2024-04-15 17:52

本文主要是介绍科大讯飞星火开源大模型iFlytekSpark-13B GPU版部署方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

星火大模型的主页:iFlytekSpark-13B: 讯飞星火开源-13B(iFlytekSpark-13B)拥有130亿参数,新一代认知大模型,一经发布,众多科研院所和高校便期待科大讯飞能够开源。 为了让大家使用的更加方便,科大讯飞增加了更多的数据,并针对工具链进行了优化。此次正式开源拥有130亿参数的iFlytekSpark-13B模型(讯飞星火开源-13B),也是首个基于全国产化算力平台“飞星一号”的大模型,正式开源!icon-default.png?t=N7T8https://gitee.com/iflytekopensource/iFlytekSpark-13B其介绍已经说得很详细了,我只是简单总结一下GPU版的推理部署方法。这里是GPU版的说明页面:deepspeed-megatron/README.md · 讯飞星火开源/iFlytekSpark-13B - Gitee.comicon-default.png?t=N7T8https://gitee.com/iflytekopensource/iFlytekSpark-13B/blob/master/deepspeed-megatron/README.md严格按照其环境要求配置环境环境即可。里面也说到,需要手动安装flash-attention和apex,这两个我都没装过,发现装后者确实有坑。期间也遇到了其他问题,例如CUDA版本之类,但都好解决,但是apex安装之后,发现有各种问题。例如报:No module named 'fused_layer_norm_cuda'。

也有博客中有解决方法:ModuleNotFoundError: No module named ‘fused_layer_norm_cuda‘_modulenotfounderror: no module named 'fused_layer_-CSDN博客文章浏览阅读5.3k次,点赞5次,收藏22次。Nvidia Apex安装与简单使用_modulenotfounderror: no module named 'fused_layer_norm_cudahttps://blog.csdn.net/Zhangye1011/article/details/125962036但是照做还是会报错,试了无数次,最终在这里看到:GPU版本报错no module named 'fused_layer_norm_cuda' · Issue #I91FJC · 讯飞星火开源/iFlytekSpark-13B - Gitee.com

结合上面的博客,感觉有可能确实是分支的问题。 apex也确实有这样的分支:

GitHub - NVIDIA/apex at 22.04-dev

所以把repo clone下来之后,首先:

git checkout 22.04-dev

再运行:

pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

竟然就没错了!想不通这么多人遇到的问题为啥不好好解决。

另外就是下载已经训练好的模型,是在这里下载:

iFlytekSpark-13B-model-GPU: 星火开源大模型13BGPU的模型权重icon-default.png?t=N7T8https://gitee.com/iflytekopensource/i-flytek-spark-13-b-model-gpu需要注意的是,如上面repo里介绍的,由于模型太大所以使用Git LFS存储,如果直接用git clone是没法下载的。需要做的是先安装Git LFS(有很多git工具已经自带了):

sudo apt-get install git-lfs

然后:

git lfs install

接下来就可以clone这个repo了:

git lfs clone https://gitee.com/iflytekopensource/i-flytek-spark-13-b-model-gpu.git

需要注意的是,从网页上看mp_rank_00_model_states.pt大概大小有50GB,两个权重文件加起来也只有100GB,我怎么clone了458GB。估计是因为repo中多次commit,不知道设置clone深度会不会解决,我没有测试。

最后总结一下目录关系,这点repo里写得也不是很详细:

运行推理的bash脚本在:iFlytekSpark-13B/deepspeed-megatron/examples_deepspeed/iFlytekSpark里,但是repo和bash脚本里写的权重文件和tokenizer的位置:

# 若文件结构如上所示,则对应参数如下
from_pretrained="/data/ckpt_download"
tokenizer_file="/data/tokenizer/tokenizer" #注意使用tokenizer/目录下.model和vocab的前缀名字tokenizer ,而不是只到tokenizer/目录

让人不明就里,实际上可以写成绝对路径,例如我为方便起见,改成了:

from_pretrained="/home/quyu/Projects/iFlytekSpark-13B/Data/ckpt_download"
tokenizer_file="/home/quyu/Projects/iFlytekSpark-13B/Data/tokenizer/tokenizer"

最后说说硬件要求,我做完了以上配置就不报别的错了,只是还是显存溢出了,我的电脑是3090*2的,看来最低只能用40GB单卡,两个24GB由于各种原因会爆显存。

这篇关于科大讯飞星火开源大模型iFlytekSpark-13B GPU版部署方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906508

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}