Python数学建模学习-PageRank算法

2024-04-15 17:12

本文主要是介绍Python数学建模学习-PageRank算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1-基本概念

PageRank算法是由Google创始人Larry Page在斯坦福大学时提出,又称PR,佩奇排名。主要针对网页进行排名,计算网站的重要性,优化搜索引擎的搜索结果。PR值是表示其重要性的因子。

中心思想:

  • 数量假设:在网页模型图中,一个网页接受到的其他网页指向的入链(In-Links)越多,说明该网页越重要。

  •  质量假设:当一个质量高的网页指向(Out-Links)一个网页,说明这个被指的网页重要。

  •  入链出链模型图1:

  •  入链出链模型图2:[把每个网页当成一个节点]

2-算法和公式 

PageRank公式

  •  PR(Ti)代表的是其他节点的(指向A节点)PR值
  • L(Ti)代表的是其他节点的(指向A节点)出链数
  • i 代表的是循环次数

i=0时, 

i=1时,PR(A)为:

 i=1时,PR(B)为:

i=1时,PR(C)为: 

i=1时,PR(D)为: 

 主要找到入链数和出链数

可以求得:

矩阵化表达:使用转移概率矩阵/马尔可夫矩阵

 将左图内容转换为右图矩阵:

从图可以看出:

从A将跳转到B或C的概率为1/2

从B将跳转到C的概率为1

从C将跳转到A或D的概率为1/2

从D将跳转到A的概率为1

通过矩阵表达快速计算PR值

公式:PR\left ( a\right )=M*V

其中M 表示转移概率矩阵/马尔可夫矩阵

 其中V 表示上一次得到的PR值

根据公式可得第一次迭代得到的PR值:

0*1/4+0*1/4+1/2*1/4+1*1/4=3/8

1/2*1/4+ 0*1/4+0*1/4+0*1/4=1/8

1/2*1/4+ 1*1/4+0*1/4+0*1/4=3/8

0*1/4+0*1/4+1/2*1/4+0*1/4=1/8

通过第一次迭代得到的PR值,我们可以得到第二次迭代的PR值:

此时的排名为:

AC;BD

再结合最开始的公式看:

 同理可求出其他PR值。

3-Dead Ends 问题

 使用转移概率矩阵快速计算PR值:

 解决方法:Teleport

 4-Dead Ends 问题修正公式

 5-Spider Traps问题

 

6- Spider Traps问题解决方案:Random Teleport

  • 步骤1:将节点图,转换成列转移概率矩阵
  • 步骤2:修正M

1转换成列转移概率矩阵

2 修正M

\beta 通常设置为0.85

第一次迭代的PR值为:

 7-Spider Traps问题修正公式 

 8-代码案例练习[使用Jupyter Notebook编程]

import networkx as nx
import matplotlib.pyplot as plt 
import random
Graph = nx.DiGraph()
Graph.add_nodes_from(range(0,100))
for i in range(100):j =random.randint(0,100)k =random.randint(0,100)Graph.add_edge(k,j)
nx.draw(Graph,with_labels=True)
plt.show()

pr = nx.pagerank(Graph,max_iter=100,alpha =0.01)
print(pr)

输出结果: 

{0: 0.009843202124104186, 1: 0.009843202124104186, 2: 0.009941633650425134, 3: 0.009974526667449609, 4: 0.009892665412017136, 5: 0.009843202124104186, 6: 0.009843202124104186, 7: 0.009843202124104186, 8: 0.009892665412017136, 9: 0.00997535174995786, 10: 0.009843202124104186, 11: 0.00989258290376631, 12: 0.009941633650425134, 13: 0.00989241788726466, 14: 0.009941633650425134, 15: 0.010024237480115035, 16: 0.009843202124104186, 17: 0.010041880358264236, 18: 0.009941963683428435, 19: 0.009843202124104186, 20: 0.00989291293676961, 21: 0.009843202124104186, 22: 0.009867810005684423, 23: 0.00989241788726466, 24: 0.009843202124104186, 25: 0.009975475512334098, 26: 0.00989258290376631, 27: 0.009941633650425134, 28: 0.00989291293676961, 29: 0.009868057530436899, 30: 0.010041385308759285, 31: 0.009843202124104186, 32: 0.009982839305644121, 33: 0.009843202124104186, 34: 0.009843202124104186, 35: 0.010041220292257635, 36: 0.00994188117517761, 37: 0.009876342665881136, 38: 0.00989258290376631, 39: 0.00987642517413196, 40: 0.009942004937553848, 41: 0.009843202124104186, 42: 0.00989241788726466, 43: 0.009909263185655886, 44: 0.009991096938338084, 45: 0.009892665412017136, 46: 0.009992293307975048, 47: 0.009942128699930086, 48: 0.009942128699930086, 49: 0.009843202124104186, 50: 0.00989241788726466, 51: 0.009868057530436899, 52: 0.009843202124104186, 53: 0.009867810005684423, 54: 0.009843202124104186, 55: 0.009843202124104186, 56: 0.009876342665881136, 57: 0.009941633650425134, 58: 0.009941963683428435, 59: 0.009843202124104186, 60: 0.009843202124104186, 61: 0.009843202124104186, 62: 0.009843202124104186, 63: 0.009843202124104186, 64: 0.009974774192202085, 65: 0.00989291293676961, 66: 0.009843202124104186, 67: 0.009942623749435036, 68: 0.00989241788726466, 69: 0.009843202124104186, 70: 0.009892665412017136, 71: 0.009843202124104186, 72: 0.009843202124104186, 73: 0.00999200452909716, 74: 0.009876672698884436, 75: 0.009876122643878936, 76: 0.009867810005684423, 77: 0.009941633650425134, 78: 0.009941633650425134, 79: 0.010041674087637172, 80: 0.009941633650425134, 81: 0.009843202124104186, 82: 0.009876342665881136, 83: 0.009991591987843034, 84: 0.009942128699930086, 85: 0.00987642517413196, 86: 0.00997551676645951, 87: 0.009843202124104186, 88: 0.009876672698884436, 89: 0.00987609514112866, 90: 0.009893407986274562, 91: 0.00989258290376631, 92: 0.009966489056757847, 93: 0.009876672698884436, 94: 0.00987609514112866, 95: 0.009843202124104186, 96: 0.00994188117517761, 97: 0.009942293716431735, 98: 0.00999200452909716, 99: 0.009843202124104186, 100: 0.009868057530436899}
max(pr.values())

 输出结果:

0.010041880358264236
import operator
max(pr.items(),key=operator.itemgetter(1))[0]

输出结果:

17
sum(pr.values())

输出结果:

0.9999999999999996
min(pr.values())

输出结果:

0.009843202124104186

9-PageRank的优缺点

优点:

  • 通过网页之间的链接来决定网页重要性,一定程度消除了认为对排名结果的影响

  •  离线计算PageRank值,而非查找的时候计算,提升了查询的效率

缺点 :

  • 存在时间久的网站,PageRank值会越来越大,而新生的网站,PageRank值增长慢

  •  非查询相关的特性,查询结果会偏离搜索的内容
  • 通过“僵尸”网站或链接,人为刷PageRank值

参考:

1.Up主帅器学习/林木的视频。 

 

这篇关于Python数学建模学习-PageRank算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906415

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig