有点意思!腾讯 ARC Lab 最新发布的MiraData数据集,用于长视频生成,从这些方面做了clip分层描述……

本文主要是介绍有点意思!腾讯 ARC Lab 最新发布的MiraData数据集,用于长视频生成,从这些方面做了clip分层描述……,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近小编网上冲浪时,被腾讯 PCG ARC Lab 新开源的文本-视频数据集——MiraData 吸引了目光。

图片

这个数据集有多新?Readme在一天前刚更新完的那种,而且数据集有一大特点,是专门为长视频生成任务设计的大规模视频数据集,不仅提供了时长更长的数据,还从视频主体、背景、风格等不同维度进行了非常详细的文本“分层”描述,关注视频生成的小伙伴不容错过!相信一定能给你启发,赶紧和小编一睹为快。

MiraData项目地址:https://github.com/mira-space/MiraData

一、数据集概览

视频数据集在sora等视频生成大模型中发挥着至关重要的作用。然而,现有的文本-视频数据集在处理长视频序列捕获镜头过渡方面往往存在不足。为了解决这些限制,腾讯 PCG ARC Lab 研究人员引入了MiraDataMi ni-So ra Data),这是一个专门为长视频生成任务设计的大规模视频数据集。

(MiraData 官方Demo Video截图,来源:https://www.youtube.com/watch?v=3G0p7Jo3GYM)

 MiraData 的主要特点

1. 长视频时长:与以前的数据集不同,以前的数据集视频剪辑通常非常短(通常小于 6 秒),MiraData 专注于时长从 1 到 2 分钟不等未剪辑视频片段。这种延长的持续时间允许对视频内容进行更全面的建模。

2. 结构化描述:MiraData 中的每个视频都附有结构化描述。这些标题从不同角度提供了详细描述,增强了数据集的丰富性。描述平均长度为349字,保证了视频内容的全面呈现。

数据集构成

在这次初始发布的版本中,MiraData 包含 57,803 个视频片段,总时长 1,754 小时,主要提供游戏城市/风景探索两个场景。clip数量和视频时长如下所示:

图片

2种场景内容

● 游戏场景:包含了丰富的游戏体验相关视频;

● 城市或自然景观场景:通过视频捕捉了多样的城市风貌和自然美景。

6种类型的描述

MiraData 中的每个视频都附有结构化描述,从以下6种不同角度进行了详细地描述,增强了数据集的丰富性:

● 主体描述(Main Object Description):描述视频中的主要目标或主体,包括它们在整个视频中的属性、动作、位置和运动。

● 背景(Background):提供有关环境或场景的信息,包括物体、地点、天气和时间。

● 风格(Style):涵盖艺术风格、视觉和摄影方面,如写实、赛博朋克、电影风格。

● 摄像机运动(Camera Movement):详细说明摄像机的平移、变焦或其他运动。

● 简短描述(Short Caption):一段简洁的摘要,描述视频的精髓,使用Panda-70M字幕模型生成。

● 密集描述(Dense Caption):一个更详尽和详细的、总结了上述五种类型的描述。

举个“栗子”

看1个官方提供的例子,就明白了,比如这个游戏视频

(开头画面冲击力较强,注意谨慎观看)

描述内容有:

主体描述

从玩家的视角出发,最初与一个对手搏斗,这一点可以从机械部件和玩家手部的特写镜头中得到证实。随后,焦点转移到一位老年女性身上,她最初表现出攻击性或防御性,高举着铲子,好像随时准备出击。接着她转身,带领玩家绕到一个木制结构的侧面,那可能是她的家。随着时间的推移,她的态度变得柔和,看起来像是在和玩家交谈,因为她放下了手中的铲子,姿态变得更加放松。

背景描述

背景描绘了郁郁葱葱的乡村环境,有一座木屋或棚屋,周围环绕着绿色植物、岩石和红色花朵。环境具有自然主义的感觉,晴朗的天空和日光表明这是白天的环境。背景中没有可见的其他人物或移动元素,这表明这是一个虽然与世隔绝但平静的地点。

风格描述

视觉风格是现实主义的,具有详细的角色模型、自然光照以及高度的环境细节,共同营造出一个沉浸式且令人信服的乡村环境,适合于电子游戏的背景设定。

镜头描述

相机视角在整个序列中始终与第一人称视点保持一致。初始画面表明了一场动态的斗争,伴随着快速的动作,而随后的画面则显示了玩家与女性互动时更为稳定的相机。镜头跟随女人移动,将她保持为焦点,并且拍摄角度会随着玩家视角的变化而变化,以保持女人在视野中,特别是当她移动和转身时。

简短描述

一个电子游戏角色站在房子前面。

密集描述

该视频序列展示了视频游戏角色在乡村环境中与不可玩角色 (NPC) 互动的第一人称视角。最初,玩家角色似乎正在与敌人或生物搏斗,如特写斗争和火花或余烬的存在所示。场景切换到玩家角色站在一位老年妇女面前,她以防御或威胁的姿势挥舞着铲子。该女子的表情和姿势表明她对玩家持警惕或对抗态度。随着视频的进展,这名女子似乎稍微放松了一点,放下了铲子并与玩家交谈,这一点从她不断变化的面部表情和肢体语言可以看出。

二、数据采集与标注

为了收集MiraData,研究团队首先手动选择不同场景下的YouTube频道。然后,使用PySceneDetect下载并分割相应频道中的所有视频。之后,选择了时长在1到2分钟之间的视频片段。对于超过2分钟的视频片段,他们将其分成多个2分钟的片段。最后,使用 GPT-4V 为视频剪辑添加描述。

GPT-4V 描述

研究团队测试了现有的开源视觉LLM方法和GPT-4V,发现GPT-4V的描述在时间序列方面的语义理解上表现出更好的准确性和连贯性。它还可以更准确地描述主要主体和背景物体,减少物体遗漏和幻觉问题。因此,他们使用GPT-4V来生成密集描述主体描述背景描述镜头描述风格描述

Panda-70M 描述

为了平衡标注成本和描述准确性,他们为每个视频统一采样 8 帧,并将它们排列成一张大图像的 2x4 网格。然后,使用Panda-70M的描述模型为每个视频添加一句话描述,作为主要内容的提示,并将其输入到他们的微调 prompt 中。

通过将微调的提示和 2x4 大图像输入 GPT-4V,他们可以在一轮对话中高效地输出多个维度的描述。具体提示内容可以在caption_gpt4v.py中找到,欢迎大家贡献更多优质的文字-视频数据。

caption_gpt4v.py链接:https://github.com/mira-space/MiraData/blob/main/caption_gpt4v.py

三、统计

数据集信息统计如下:

图片

密集字幕的总文本长度统计

图片

六种类型字幕的总文本长度统计

简短描述词云

图片

密集描述的词云

四、数据集下载

作者提供的描述元文件,除了上述6种维度描述外,还提供了YouTube视频ID等相关信息:

● 元文件字段:

· index : 视频片段索引,由以下部分组成{download_idx}_{video_id}-{clip_id}

· video_id : YouTube 视频 ID

· start_frame : YouTube 视频的剪辑开始帧

· end_frame : YouTube 视频的剪辑结束帧

· main_object_caption:视频中主体描述

· background_caption : 视频背景描述

· style_caption:视频风格描述

· camera_caption : 镜头描述

· Short_caption:简短描述

· dend_caption:密集描述

· fps:用于提取帧的视频帧率

*你可以使用 start_frame/fps 或 end_frame/fps 获取开始和结束时间戳

另外,作者提供了视频下载并分割的脚本:

python download_data.py --meta_csv miradata_v0.csv --video_start_id 0 --video_end_id 10631 --raw_video_save_dir miradata/raw_video --clip_video_save_dir miradata/clip_video

其中--video_start_id和表示要下载的元文件的--video_end_id开始值和结束值。游戏场景范围为0至7416,城市/风景探索范围为7417至10631。download_idxindex

更多数据集,请访问OpenDataLab:https://opendatalab.org.cn/

这篇关于有点意思!腾讯 ARC Lab 最新发布的MiraData数据集,用于长视频生成,从这些方面做了clip分层描述……的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905912

相关文章

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL