文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《大规模省间电力中长期交易出清的伴随模型引导加速方法》

本文主要是介绍文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《大规模省间电力中长期交易出清的伴随模型引导加速方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这份文件是一篇关于大规模省间电力中长期交易出清的伴随模型引导加速方法的研究论文。核心内容包括以下几个方面:

  1. 研究背景:省间电力中长期交易需要通过出清计算来确定购售匹配对以及它们经过的输电路径。随着交易的高频次和大规模发展,现有的求解方法难以适应这种趋势,因此需要一种高效的求解方法。

  2. 问题描述:多时段省间电力中长期交易出清问题的决策空间由时段数、购方数、售方数和路径数四个维度构成,导致出清模型规模庞大,求解难度高。

  3. 提出的方法:论文提出了一种伴随模型引导加速方法。首先,通过量化分析影响模型求解效率的主要因素,然后通过聚类提取典型交易时段,识别典型交易模式,排除不可能成交的购售对,并缩小交易路径的优化范围。这样构建了一个决策空间大幅缩减但约束形式与原问题一致的伴随模型,能够快速得到原问题的高质量可行解。最后,利用伴随模型的求解信息引导原始模型的热启动加速过程,显著提高出清求解效率。

  4. 案例分析:基于中国多个电网的实际数据进行案例仿真,结果表明所提方法可以无损地将省间电力中长期交易出清求解效率提高3.0到5.1倍,平均加速比为3.9,加速效果明显。

  5. 结论:本文提出的基于伴随模型引导的加速方法,能够有效提升省间电力中长期交易出清问题的求解效率,为实现资源长周期大范围优化配置提供了计算支持。

  6. 关键词:省间电力中长期交易;伴随模型;热启动;求解效率

整体而言,这篇论文针对省间电力中长期交易出清模型规模大、求解难度高的问题,提出了一种新的伴随模型引导加速方法,并通过实际数据验证了其有效性。

为了复现论文中提出的大规模省间电力中长期交易出清的伴随模型引导加速方法,我们需要遵循以下步骤,并使用程序语言(这里以Python为例)来实现:

1. 环境搭建

首先,需要搭建Python环境,并安装必要的科学计算库,如NumPy、Pandas等,以及优化库如SciPy或者专门的求解器接口,如Gurobi。

# 导入必要的库
import numpy as np
import pandas as pd
from scipy.optimize import minimize
# 如果使用Gurobi求解器,需要安装并导入相应的库
# import gurobipy

2. 数据准备

准备省间电力中长期交易的数据,包括售方、购方、路径和时段的信息。

# 假设我们有以下数据
sellers_data = ...  # 售方数据
buyers_data = ...    # 购方数据
paths_data = ...     # 路径数据
time_periods_data = ...  # 时段数据

3. 伴随模型构建

根据论文描述,构建伴随模型,包括目标函数和约束条件。

def build_adjoint_model(data):# 根据提供的数据构建伴随模型# 这里需要根据论文中的数学模型来定义目标函数和约束# 例如,使用线性规划来近似描述问题# ...# 返回模型的输入参数,例如目标函数系数、约束条件等return model_params# 构建伴随模型
model_params = build_adjoint_model(combined_data)

4. 伴随模型求解

使用优化库求解伴随模型,获取高质量可行解。

# 求解伴随模型
solution = minimize(objective_function, initial_guess, args=(model_params,), method='...')
# 假设objective_function是目标函数,initial_guess是初始猜测解
# solution.x是优化后的解

5. 原始模型热启动

使用伴随模型的解作为原始模型的初始解,进行热启动加速求解。

def warm_start_solve(model_params, initial_solution):# 使用伴随模型的解作为初始解,对原始模型进行热启动求解# 这里需要调用具体的求解器进行求解# 例如,使用Gurobi求解器# ...return final_solution# 热启动求解原始模型
final_solution = warm_start_solve(model_params, solution.x)

6. 结果分析

分析求解结果,验证加速效果。

# 分析结果
print("伴随模型解:", solution.x)
print("原始模型热启动后解:", final_solution)# 验证加速效果,可以计算求解时间等指标
# 假设我们有原始模型求解时间original_solve_time
# 计算加速比
acceleration_ratio = original_solve_time / (time_to_solve_adjoint_model + time_to_warm_start_solve)
print("加速比:", acceleration_ratio)

7. 仿真测试

使用多个电网实际数据进行测试,验证方法的有效性。

# 测试不同的电网数据
for grid_data in multiple_grids_data:model_params = build_adjoint_model(grid_data)solution = minimize(objective_function, initial_guess, args=(model_params,), method='...')final_solution = warm_start_solve(model_params, solution.x)# 分析结果...

请注意,上述代码仅为仿真复现的思路框架,实际实现时需要根据具体的数学模型和算法细节进行填充和调整。此外,还需要编写相应的数据输入输出功能,以及可能的可视化工具来展示仿真结果。如果使用特定的商业求解器,还需要安装相应的Python接口并按照其API进行编程。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《大规模省间电力中长期交易出清的伴随模型引导加速方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905421

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据