边缘计算【智能+安全检测】系列教程--使用OpenCV+GStreamer实现真正的硬解码,完全消除马赛克

本文主要是介绍边缘计算【智能+安全检测】系列教程--使用OpenCV+GStreamer实现真正的硬解码,完全消除马赛克,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
通过现有博客的GST_URL = "rtspsrc location=rtsp://admin:abcd1234@192.168.1.64:554/h264/ch01/main/av_stream latency=150 ! rtph264depay ! avdec_h264 ! videorate ! videoconvert ! appsink sync=false" GStreamer的解码方式解码,大多情况应该存在上图马赛克的问题,请勿紧张,其实上述url并没有调用硬件解码,后面有调用硬件解码的ULR,我们来在接下来的介绍中释获。
通过RTSP协议连接海康威视摄像头将图片送入AI推理,发现OpenCV的VideoCapture使用的是软解码大量消耗了cpu的资源,并无法做到实时数据处理存在5秒钟的延时。只能把解码这部分送到硬件解码器去处理分摊掉cpu的压力,

NVCODEC是什么?

一语概括就是Nvidia提供的硬件编解码,它是一个专门的硬件元器件,在处理视频上面很有优势,但是不代表不消耗任何的cpu或者内存资源。下面我们就一步步开始实现硬件编码。

编译OpenCV
  1. 安装相关依赖
sudo apt-get update
sudo apt-get dist-upgrade -y --autoremove
sudo apt-get install -y \build-essential \cmake \git \gfortran \libatlas-base-dev \libavcodec-dev \libavformat-dev \libavresample-dev \libcanberra-gtk3-module \libdc1394-22-dev \libeigen3-dev \libglew-dev \libgstreamer-plugins-base1.0-dev \libgstreamer-plugins-good1.0-dev \libgstreamer1.0-dev \libgtk-3-dev \libjpeg-dev \libjpeg8-dev \libjpeg-turbo8-dev \liblapack-dev \liblapacke-dev \libopenblas-dev \libpng-dev \libpostproc-dev \libswscale-dev \libtbb-dev \libtbb2 \libtesseract-dev \libtiff-dev \libv4l-dev \libxine2-dev \libxvidcore-dev \libx264-dev \pkg-config \

这篇关于边缘计算【智能+安全检测】系列教程--使用OpenCV+GStreamer实现真正的硬解码,完全消除马赛克的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904909

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象