堆叠式神经网络模型stackingKeras【Stacking+Keras】+GUI可视化应用,原理讲解+代码详细实现说明【超强的模型神器,支持自定义】

本文主要是介绍堆叠式神经网络模型stackingKeras【Stacking+Keras】+GUI可视化应用,原理讲解+代码详细实现说明【超强的模型神器,支持自定义】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   声明:
             本博客中的VIP系列博客内容严禁转载,未经允许不得以任何形式进行传播,违者追究侵权责任!                           

           堆叠式神经网络模型【Stacking+Keras】+GUI可视化应用

                                                                                                                                                         ——沂水寒城

        由于工作和学习的缘故,陆陆续续接触到机器学习、深度学习相关的知识已经有好几年的时间了,从单一的元模型到复杂的模型再到集成学习模型,不同的学习任务类型所需要的模型也是不尽相同的。今天主要是介绍一种集成学习思想和深度学习相结合的应用实例,也是我在实际项目中实际搭建使用到的一种模型——堆叠式神经网络模型。

       本文主要包括:集成学习简介、堆叠式神经网络模型实现、GUI可视化应用几个部分。

一、集成学习简介

       集成学习的主要思想是利用一定的手段学习出多个分类器,而且这多个分类器要求是弱分类器,然后将多个分类器进行组合共同预测。核心思想就是如何训练处多个弱分类器以及如何将这些弱分类器进行组合。一般采用弱分类器的原因在于将误差进行均衡,因为一旦某个分类器太强了就会造成后面的结果受其影响太大,严重的会导致后面的分类器无法进行分类。常用的弱分类器可以采用误差率小于0.5的,比如说逻辑回归、SVM、神经网络。可以采用随机选取数据进行分类器的训练,也可以采用不断的调整错误分类的训练数据的权重生成新的分类器。集成学习原理示意图如下图所示:

       集成学习是机器学习中一个非常重要且热门的分支,是用多个弱分类器构成一个强分类器,其哲学思想是“三个臭皮匠赛过诸葛亮”。一般的弱分类器可以由决策树,神经网络,贝叶斯分类器,K-近邻等构成。常见的集成学习策略主要包括:Bagging、Boosting、Stacking和Blending,对于初学者来说前两种思想或者是框架可能是会比较耳熟能详的,而后两种如果没有接触到的话可能会觉得比较陌生,我也是读了研究生以后才接触到Stacking和Blending的,思想还是比较好理解的,效果也是蛮不错的,这里简单温习一下这三种集成学习策略。

1、Bagging

         Bagging的个体弱学习器的训练集是通过随机采样得到的。通过T次有放回的随机采样,我们就可以得到T个采样集,对于这T个采样集,我们可以分别独立的训练出T个弱学习器,再对这T个弱学习器通过集合策略来得到最终的强学习器。随机森林是Bagging的一个特化进阶版,所谓的特化是因为随机森林的弱学习器都是决策树。所谓的进阶是随机森林在Bagging的样本随机采样基础上,又加上了特征的随机选择,其基本思想没有脱离Bagging的范畴。Bagging原理示意图如下所示:

2、Boosting

        Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的样本在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器2.,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。Boosting系列算法里最著名算法主要有AdaBoost算法和GBDT提升树(boosting tree)系列算法。原理示意图如下所示:

这篇关于堆叠式神经网络模型stackingKeras【Stacking+Keras】+GUI可视化应用,原理讲解+代码详细实现说明【超强的模型神器,支持自定义】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904684

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建