LLM生成模型在生物基因DNA应用:HyenaDNA

2024-04-14 17:04

本文主要是介绍LLM生成模型在生物基因DNA应用:HyenaDNA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:
https://github.com/HazyResearch/hyena-dna

整体框架基本就是GPT模型架构
不一样的就是𝖧𝗒𝖾𝗇𝖺𝖣𝖭𝖠 block ,主要是GPT的多重自注意力层引入了cnn在这里插入图片描述在这里插入图片描述

特征向量提取

# python huggingface.py

#@title Single example
import json
import os
import subprocess
# import transformers
from transformers import PreTrainedModeldef inference_single():'''this selects which backbone to use, and grabs weights/ config from HF4 options:'hyenadna-tiny-1k-seqlen'   # fine-tune on colab ok'hyenadna-small-32k-seqlen''hyenadna-medium-160k-seqlen'  # inference only on colab'hyenadna-medium-450k-seqlen'  # inference only on colab'hyenadna-large-1m-seqlen'  # inference only on colab'''# you only need to select which model to use here, we'll do the rest!pretrained_model_name = 'hyenadna-small-32k-seqlen'max_lengths = {'hyenadna-tiny-1k-seqlen': 1024,'hyenadna-small-32k-seqlen': 32768,'hyenadna-medium-160k-seqlen': 160000,'hyenadna-medium-450k-seqlen': 450000,  # T4 up to here'hyenadna-large-1m-seqlen': 1_000_000,  # only A100 (paid tier)}max_length = max_lengths[pretrained_model_name]  # auto selects# data settings:use_padding = Truerc_aug = False  # reverse complement augmentationadd_eos = False  # add end of sentence token# we need these for the decoder head, if usinguse_head = Falsen_classes = 2  # not used for embeddings only# you can override with your own backbone config here if you want,# otherwise we'll load the HF one in Nonebackbone_cfg = Nonedevice = 'cuda' if torch.cuda.is_available() else 'cpu'print("Using device:", device)# instantiate the model (pretrained here)if pretrained_model_name in ['hyenadna-tiny-1k-seqlen','hyenadna-small-32k-seqlen','hyenadna-medium-160k-seqlen','hyenadna-medium-450k-seqlen','hyenadna-large-1m-seqlen']:# use the pretrained Huggingface wrapper insteadmodel = HyenaDNAPreTrainedModel.from_pretrained('./checkpoints',pretrained_model_name,download=True,config=backbone_cfg,device=device,use_head=use_head,n_classes=n_classes,)# from scratchelif pretrained_model_name is None:model = HyenaDNAModel(**backbone_cfg, use_head=use_head, n_classes=n_classes)# create tokenizertokenizer = CharacterTokenizer(characters=['A', 'C', 'G', 'T', 'N'],  # add DNA characters, N is uncertainmodel_max_length=max_length + 2,  # to account for special tokens, like EOSadd_special_tokens=False,  # we handle special tokens elsewherepadding_side='left', # since HyenaDNA is causal, we pad on the left)#### Single embedding example ##### create a sample 450k long, preparesequence = 'ACTG' * int(max_length/4)tok_seq = tokenizer(sequence)tok_seq = tok_seq["input_ids"]  # grab ids# place on device, convert to tensortok_seq = torch.LongTensor(tok_seq).unsqueeze(0)  # unsqueeze for batch dimtok_seq = tok_seq.to(device)# prep model and forwardmodel.to(device)model.eval()with torch.inference_mode():embeddings = model(tok_seq)print(embeddings.shape)  # embeddings here!# # uncomment to run! (to get embeddings)
inference_single()

这篇关于LLM生成模型在生物基因DNA应用:HyenaDNA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903536

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应