书生·浦语2.0(InternLM2)大模型实战--Day03 LMDeploy量化部署 | LLMVLM实战

本文主要是介绍书生·浦语2.0(InternLM2)大模型实战--Day03 LMDeploy量化部署 | LLMVLM实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

  • 课程视频:https://www.bilibili.com/video/BV1tr421x75B/
  • 课程文档:https://github.com/InternLM/Tutorial/blob/camp2/lmdeploy/README.md
  • 课程作业:https://github.com/InternLM/Tutorial/blob/camp2/lmdeploy/homework.md
  • 平台:InternLM-studio

1.LMDeploy环境部署

1.1 InternStudio创建conda环境

InternStudio开发机创建conda环境(推荐)
由于环境依赖项存在torch,下载过程可能比较缓慢。InternStudio上提供了快速创建conda环境的方法。打开命令行终端,创建一个名为lmdeploy的环境:

studio-conda -t lmdeploy -o pytorch-2.1.2
环境创建成功后,提示如下:
在这里插入图片描述

1.2 本地环境创建conda环境

注意,如果你在上一步已经在InternStudio开发机上创建了conda环境,这一步就没必要执行了。

详情
打开命令行终端,让我们来创建一个名为lmdeploy的conda环境,python版本为3.10。

conda create -n lmdeploy -y python=3.10
环境创建成功后,提示如下:
在这里插入图片描述

1.3 安装LMDeploy

接下来,激活刚刚创建的虚拟环境。安装0.3.0版本的lmdeploy。

conda activate lmdeploy
pip install lmdeploy[all]==0.3.0

等待安装结束就OK了!

2 LMDeploy模型对话(chat)

2.1 Huggingface与TurboMind

HuggingFace

HuggingFace是一个高速发展的社区,包括Meta、Google、Microsoft、Amazon在内的超过5000家组织机构在为HuggingFace开源社区贡献代码、数据集和模型。可以认为是一个针对深度学习模型和数据集的在线托管社区,如果你有数据集或者模型想对外分享,网盘又不太方便,就不妨托管在HuggingFace。

托管在HuggingFace社区的模型通常采用HuggingFace格式存储,简写为HF格式。

但是HuggingFace社区的服务器在国外,国内访问不太方便。国内可以使用阿里巴巴的MindScope社区,或者上海AI Lab搭建的OpenXLab社区,上面托管的模型也通常采用HF格式。

TurboMind

TurboMind是LMDeploy团队开发的一款关于LLM推理的高效推理引擎,它的主要功能包括:LLaMa
结构模型的支持,continuous batch 推理模式和可扩展的 KV 缓存管理器。

TurboMind推理引擎仅支持推理TurboMind格式的模型。因此,TurboMind在推理HF格式的模型时,会首先自动将HF格式模型转换为TurboMind格式的模型。该过程在新版本的LMDeploy中是自动进行的,无需用户操作。

几个容易迷惑的点:

  • TurboMind与LMDeploy的关系:LMDeploy是涵盖了LLM
    任务全套轻量化、部署和服务解决方案的集成功能包,TurboMind是LMDeploy的一个推理引擎,是一个子模块。LMDeploy也可以使用pytorch作为推理引擎。
  • TurboMind与TurboMind模型的关系:TurboMind是推理引擎的名字,TurboMind模型是一种模型存储格式

,TurboMind引擎只能推理TurboMind格式的模型。

2.2 下载模型

本次实战营已经在开发机的共享目录中准备好了常用的预训练模型,可以运行如下命令查看:

ls /root/share/new_models/Shanghai_AI_Laboratory/

显示如下,每一个文件夹都对应一个预训练模型。
在这里插入图片描述
以InternLM2-Chat-1.8B模型为例,从官方仓库下载模型。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

我换一个问题
在这里插入图片描述
额额,过于离谱。。

以命令行方式与模型对话
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.LMDeploy模型量化(Lite)

本部分内容主要介绍如何对模型进行量化。主要包括 KV8量化和W4A16量化。总的来说,量化是一种以参数或计算中间结果精度下降换空间节省(以及同时带来的性能提升)的策略。

正式介绍 LMDeploy 量化方案前,需要先介绍两个概念:

  • 计算密集(compute-bound): 指推理过程中,绝大部分时间消耗在数值计算上;针对计算密集型场景,可以通过使用更快的硬件计算单元来提升计算速。
  • 访存密集(memory-bound): 指推理过程中,绝大部分时间消耗在数据读取上针对访存密集型场景,一般通过减少访存次数、提高计算访存比或降低访存量来优化。

常见的 LLM 模型由于 Decoder Only 架构的特性,实际推理时大多数的时间都消耗在了逐 Token 生成阶段(Decoding 阶段),是典型的访存密集型场景。

那么,如何优化 LLM 模型推理中的访存密集问题呢? 我们可以使用KV8量化W4A16量化

  • KV8量化是指将逐 Token(Decoding)生成过程中的上下文 K 和 V 中间结果进行 INT8 量化(计算时再反量化),以降低生成过程中的显存占用。
  • W4A16 量化,将 FP16 的模型权重量化为 INT4,Kernel 计算时,访存量直接降为 FP16 模型的 1/4,大幅降低了访存成本。Weight Only 是指仅量化权重,数值计算依然采用 FP16(需要将 INT4 权重反量化)。

3.1 设置最大KV Cache缓存大小

KV Cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,KV Cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,KV Cache全部存储于显存,以加快访存速度。当显存空间不足时,也可以将KV Cache放在内存,通过缓存管理器控制将当前需要使用的数据放入显存。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、KV Cache占用的显存,以及中间运算结果占用的显存。LMDeploy的KV Cache管理器可以通过设置--cache-max-entry-count参数,控制KV缓存占用剩余显存的最大比例。(默认的比例为0.8)

设置不同比例,运行对话,查看右上角资源监视器中的显存占用情况

# 首先保持不加该参数(默认0.8),运行1.8B模型。
lmdeploy chat /root/internlm2-chat-1_8b# 改变--cache-max-entry-count参数,设为0.5。
lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.5# 把--cache-max-entry-count参数设置为0.01,约等于禁止KV Cache占用显存。
lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.01

显存占用分别为7816M 、6660M 、 4904M
在这里插入图片描述
显然,该参数可以降低缓存,但代价是降低模型推理速度。

3.2 使用W4A16量化

LMDeploy使用AWQ算法,实现模型4bit权重量化。推理引擎TurboMind提供了非常高效的4bit推理cuda kernel,性能是FP16的2.4倍以上。它支持以下NVIDIA显卡:

  • 图灵架构(sm75):20系列、T4
  • 安培架构(sm80,sm86):30系列、A10、A16、A30、A100
  • Ada Lovelace架构(sm90):40 系列

运行前,首先安装一个依赖库。

pip install einops==0.7.0

仅需执行一条命令,就可以完成模型量化工作。

lmdeploy lite auto_awq \/root/internlm2-chat-1_8b \--calib-dataset 'ptb' \--calib-samples 128 \--calib-seqlen 1024 \--w-bits 4 \--w-group-size 128 \--work-dir /root/internlm2-chat-1_8b-4bit

运行时间较长,请耐心等待。量化工作结束后,新的HF模型被保存到internlm2-chat-1_8b-4bit目录。(请记住这个目录,后面改成量W4A16时需要用到)

为了更加明显体会到W4A16的作用,我们将KV Cache比例再次调为0.01,查看显存占用情况。

lmdeploy chat /root/internlm2-chat-1_8b-4bit --model-format awq --cache-max-entry-count 0.01

在这里插入图片描述
可以看到,显存占用变为2436MB,明显降低。

进阶作业
1.设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。
在这里插入图片描述
在这里插入图片描述

4.LMDeploy服务(serve)

在第二章和第三章,我们都是在本地直接推理大模型,这种方式成为本地部署。在生产环境下,我们有时会将大模型封装为API接口服务,供客户端访问。

我们来看下面一张架构图:
在这里插入图片描述

我们把从架构上把整个服务流程分成下面几个模块。

  • 模型推理/服务。主要提供模型本身的推理,一般来说可以和具体业务解耦,专注模型推理本身性能的优化。可以以模块、API等多种方式提供。 API
  • Server。中间协议层,把后端推理/服务通过HTTP,gRPC或其他形式的接口,供前端调用。
  • Client。可以理解为前端,与用户交互的地方。通过通过网页端/命令行去调用API接口,获取模

型推理/服务。
值得说明的是,以上的划分是一个相对完整的模型,但在实际中这并不是绝对的。比如可以把“模型推理”和“API Server”合并,有的甚至是三个流程打包在一起提供服务。

4.1 启动API服务器

通过以下命令启动API服务器,推理internlm2-chat-1_8b模型:

lmdeploy serve api_server \/root/internlm2-chat-1_8b \--model-format hf \--quant-policy 0 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1

其中,model-format、quant-policy这些参数是与第三章中量化推理模型一致的;server-name和server-port表示API服务器的服务IP与服务端口;tp参数表示并行数量(GPU数量)。

通过运行以上指令,我们成功启动了API服务器,请勿关闭该窗口,后面我们要新建客户端连接该服务。

可以通过运行一下指令,查看更多参数及使用方法:

lmdeploy serve api_server -h

在这里插入图片描述

也可以直接打开http://{host}:23333查看接口的具体使用说明,如下图所示。
在这里插入图片描述

4.2 命令行客户端连接API服务器

在“4.1”中,我们在终端里新开了一个API服务器。

本节中,我们要新建一个命令行客户端去连接API服务器。首先通过VS Code新建一个终端:
在这里插入图片描述
激活conda环境。
运行命令行客户端:

lmdeploy serve api_client http://localhost:23333

运行后,可以通过命令行窗口直接与模型对话:
在这里插入图片描述
现在使用的架构是这样的:
在这里插入图片描述

4.3 网页客户端连接API服务器

关闭刚刚的VSCode终端,但服务器端的终端不要关闭。

新建一个VSCode终端,激活conda环境。
使用Gradio作为前端,启动网页客户端。

conda activate lmdeploy
lmdeploy serve gradio http://localhost:23333 \--server-name 0.0.0.0 \--server-port 6006

注意,这一步由于Server在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd窗口,输入命令如下:

ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

在这里插入图片描述
然后打开浏览器,访问http://127.0.0.1:23333
然后就可以与模型进行对话了!
在这里插入图片描述
在这里插入图片描述
现在使用的架构是这样的:
在这里插入图片描述

进阶作业
2.以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。

【步骤1】以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,有三处要改哈!

  • 模型路径:原/root/internlm2-chat-1_8b,改为/root/internlm2-chat-1_8b-4bit
  • 模型格式model-format:原hf,改为awq
  • 加KV Cache比例参数:指定cache-max-entry-count 0.4

代码如下,

lmdeploy serve api_server \/root/internlm2-chat-1_8b-4bit \--model-format awq \--cache-max-entry-count 0.4 \--quant-policy 0 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1 

在这里插入图片描述
【步骤2】使用命令行客户端与模型对话
启动后,同 章节4.2 的操作,运行起命令行客户端即可
在这里插入图片描述

【步骤3】使用Gradio网页客户端与模型对话
启动后,同 章节4.3 的操作,运行起Gradio网页客户端即可
在这里插入图片描述

5.Python代码集成

在开发项目时,有时我们需要将大模型推理集成到Python代码里面。

5.1 Python代码集成运行1.8B模型

新建pipeline.py,填入以下内容。

from lmdeploy import pipelinepipe = pipeline('/root/internlm2-chat-1_8b')
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

代码解读
第1行,引入lmdeploy的pipeline模块
第3行,从目录“./internlm2-chat-1_8b”加载HF模型
第4行,运行pipeline,这里采用了批处理的方式,用一个列表包含两个输入,lmdeploy同时推理两个输入,产生两个输出结果,结果返回给response
第5行,输出response

保存后运行代码文件:

python /root/pipeline.py

在这里插入图片描述

5.2 向TurboMind后端传递参数

在第3章,我们通过向lmdeploy传递附加参数,实现模型的量化推理,及设置KV Cache最大占用比例。在Python代码中,可以通过创建TurbomindEngineConfig,向lmdeploy传递参数。

以设置KV Cache占用比例为例,新建python文件pipeline_kv.py,填入如下内容:

from lmdeploy import pipeline, TurbomindEngineConfig# 调低 k/v cache内存占比调整为总显存的 20%
backend_config = TurbomindEngineConfig(cache_max_entry_count=0.2)pipe = pipeline('/root/internlm2-chat-1_8b',backend_config=backend_config)
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

运行python代码:

python /root/pipeline_kv.py

在这里插入图片描述

进阶作业
3.使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。

新建pipeline_kv2.py,修改红框中的3处位置

from lmdeploy import pipeline, TurbomindEngineConfig# 使用W4A16量化
# 调低 k/v cache内存占比调整为总显存的 40%
backend_config = TurbomindEngineConfig(model_format='awq',cache_max_entry_count=0.4)# 修改模型位置
pipe = pipeline('/root/internlm2-chat-1_8b-4bit',backend_config=backend_config)
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

在这里插入图片描述

6.拓展部分

6.1 使用LMDeploy运行视觉多模态大模型llava

最新版本的LMDeploy支持了llava多模态模型。运行本pipeline最低需要30%的InternStudio开发机

安装llava依赖库

conda activate lmdeploypip install git+https://github.com/haotian-liu/LLaVA.git@4e2277a060da264c4f21b364c867cc622c945874

新建一个python文件pipeline_llava.py,填入内容如下:

from lmdeploy.vl import load_image
from lmdeploy import pipeline, TurbomindEngineConfigbackend_config = TurbomindEngineConfig(session_len=8192) # 图片分辨率较高时请调高session_len
# pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config) 非开发机运行此命令
pipe = pipeline('/share/new_models/liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config)image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

代码解读:

第1行引入了lmdeploy的pipeline模块,第2行引入用于载入图片的load_image函数
第5行创建了pipeline实例
第7行从github下载了一张关于老虎的图片,如下:
在这里插入图片描述
第8行运行pipeline,输入提示词“describe this image”,和图片,结果返回至response
第9行输出response

运行pipeline

python /root/pipeline_llava.py

在这里插入图片描述

我的回答的翻译是:这是一张老虎趴在草地上的彩色照片。老虎正对着镜头,眼睛睁得大大的,目光直视前方。它的头部突出,有深色的竖条纹,皮毛是典型的橙色和黑色混合色。老虎的耳朵竖起,嘴微微张开,给人一种轻松而又警惕的感觉。背景是模糊的,暗示着绿树成荫的自然环境。图片上没有明显的文字或特殊标志

我们也可以通过Gradio来运行llava模型。新建python文件gradio_llava.py,填入以下内容:

import gradio as gr
from lmdeploy import pipeline, TurbomindEngineConfigbackend_config = TurbomindEngineConfig(session_len=8192) # 图片分辨率较高时请调高session_len
# pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config) 非开发机运行此命令
pipe = pipeline('/share/new_models/liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config)def model(image, text):if image is None:return [(text, "请上传一张图片。")]else:response = pipe((text, image)).textreturn [(text, response)]demo = gr.Interface(fn=model, inputs=[gr.Image(type="pil"), gr.Textbox()], outputs=gr.Chatbot())
demo.launch()   

运行python程序。

python /root/gradio_llava.py

通过ssh转发一下7860端口。

ssh -CNg -L 7860:127.0.0.1:7860 root@ssh.intern-ai.org.cn -p <你的ssh端口>

通过浏览器访问 http://127.0.0.1:7860

然后就可以使用啦~
在这里插入图片描述

进阶作业
4.使用 LMDeploy 运行视觉多模态大模型 llava gradio demo
在这里插入图片描述在这里插入图片描述

6.2 使用LMDeploy运行第三方大模型

LMDeploy不仅支持运行InternLM系列大模型,还支持其他第三方大模型。支持的模型列表如下:
在这里插入图片描述
可以从Modelscope,OpenXLab下载相应的HF模型,下载好HF模型,下面的步骤就和使用LMDeploy运行InternLM2一样啦~

这篇关于书生·浦语2.0(InternLM2)大模型实战--Day03 LMDeploy量化部署 | LLMVLM实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903317

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}