本文主要是介绍【C++算法模板】背包九讲(下):混合背包、二维费用背包、带依赖的背包、背包求方案数、背包求具体方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 1)混合背包
- 2)二维费用背包
- 3)带依赖的背包
- 4)背包求方案数
- 5)背包求具体方案
1)混合背包
时间复杂度: O ( n 2 l o g 2 ) O(n^2log^2) O(n2log2),空间复杂度: O ( n ) O(n) O(n)
- 关键点在于将多重背包二进制优化后变成 01 01 01背包和 01 01 01背包一起处理,完全背包单独处理,其实就是混合考了几种背包的处理方式
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 三种物品三种放法,运用每组问题的解题思路即可const int N=1e3+5;int n,m;
int f[N];struct Thing {int kind; // 01?完全?多重?int v,w;
};
vector<Thing> things;int main() {cin>>n>>m;for(int i=0;i<n;i++) {int v,w,s;scanf("%d%d%d",&v,&w,&s);// 01背包问题if(s<0) things.push_back({-1,v,w});// 完全背包问题else if(s==0) things.push_back({0,v,w});// 多重背包问题else {for(int k=1;k<=s;k*=2) {s-=k;things.push_back({-1,v*k,w*k}); // 转换成01背包}if(s>0) things.push_back({-1,v*s,w*s});}}// 处理所有thingfor(auto item:things) {// 01背包/多重背包的处理→if(item.kind<0) {for(int j=m;j>=item.v;j--) {f[j]=max(f[j],f[j-item.v]+item.w);}}// 完全背包的处理→else {for(int j=item.v;j<=m;j++) {f[j]=max(f[j],f[j-item.v]+item.w);}}}cout<<f[m]<<endl;return 0;
}
2)二维费用背包
时间复杂度: O ( n 3 ) O(n^3) O(n3),空间复杂度: O ( n 2 ) O(n^2) O(n2)
- 除了体积限制外加入了重量限制,处理方法和 01 01 01背包完全类似,只不过多了一重循环,和一维空间
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: const int N=1e3+5;
const int V=1e2+5; // 最大体积
const int M=1e2+5; // 最大载重
int n,v,m;
int f[V][M]; // 体积是i重量是j的最大价值int main() {cin>>n>>v>>m;for(int i=1;i<=n;i++) {// 边输入边处理int a,b,c;scanf("%d%d%d",&a,&b,&c);for(int j=v;j>=a;j--) {for(int k=m;k>=b;k--) {f[j][k]=max(f[j][k],f[j-a][k-b]+c);}}}cout<<f[v][m]<<endl;return 0;
}
3)带依赖的背包
时间复杂度: O ( n 3 ) O(n^3) O(n3),空间复杂度: O ( n ) O(n) O(n)
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 选子物品前必须要选父物品const int N=1e2+5;
int n,m;
int h[N],e[N],ne[N],idx;
int v[N],w[N];
int f[N][N]; // f[i][j]:在选节点j的情况下总体积<=j,以i为根的子树的最大总收益是多少?// 每个子节点是一个物品组,每个组里面只能选一个,就变成了分组背包问题void add(int a,int b) {e[idx]=b;ne[idx]=h[a];h[a]=idx++;
}void dfs(int u) {// 循环物品组for(int i=h[u];i!=-1;i=ne[i]) {int son=e[i]; dfs(son);// 枚举背包容量,因为一定要选择根节点// 所以j-v[u],01背包从大到小枚举for(int j=m-v[u];j>=0;j--) {// 枚举决策,这个组里面选哪个// 枚举这个子节点用哪个体积for(int k=0;k<=j;k++) {f[u][j]=max(f[u][j],f[u][j-k]+f[son][k]);}}}// 如果体积大于等于当前物品体积,把之前空出来的位置把物品价值加进去for(int i=m;i>=v[u];i--) f[u][i]=f[u][i-v[u]]+w[u];// 如果体积小于当前物品体积,整棵子树一个点都不能选for(int i=0;i<v[u];i++) f[u][i]=0;
}int main() {memset(h,-1,sizeof h);cin>>n>>m;int root;for(int i=1;i<=n;i++) {int p;scanf("%d%d%d",&v[i],&w[i],&p); // p表示依赖关系if(p==-1) root=i; // -1表示根节点else add(p,i);}dfs(root);cout<<f[root][m]<<endl; // 根节点为root背包最大容量为m的最大价值return 0;
}
4)背包求方案数
时间复杂度: O ( n 2 ) O(n^2) O(n2),空间复杂度: O ( n ) O(n) O(n)
- 在 01 01 01 背包的基础上要求求出能得到最大价值的方案数共有多少种
- 若初始化 f [ 1 ] f[1] f[1] 到 f [ m ] f[m] f[m],那么 f [ j ] f[j] f[j] 代表的是背包容量不超过 j j j 时所得最大价值,为了便于统计,我们想让 f [ j ] f[j] f[j] 表示背包容量恰为 j j j 时的最大价值,所以需要把 f [ 1 ] f[1] f[1] 到 f [ m ] f[m] f[m] 初始化为 − I N F -INF −INF
- 因为最优解不一定在 f [ m ] f[m] f[m] 空间不一定用完,所以还需要枚举出最大价值,再把最大价值对应的方案数累加起来,才是最终结果
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 求最大价值的选法有多少种
// 为了便于统计,我们要让物理意义变为背包容量恰为j时的最大价值
// 所以要初始化为负无穷const int N=1e3+5;
const int mod=1e9+7; // 答案很大
const int INF=1e6;int n,m;
int f[N],g[N];int main() {cin>>n>>m;g[0]=1; // 初始化,背包容量为0时方案数是1// 背包容量为[1,m]时最大价值初始化为-INFfor(int i=1;i<=m;i++) {f[i]=-INF;}for(int i=0;i<n;i++) {int v,w;cin>>v>>w;for(int j=m;j>=v;j--) {// 选与不选的最大值int t=max(f[j],f[j-v]+w);int s=0;// 看哪种方案更优,把其方案数拿过来// 因为有可能f[j]=f[j-v]+w,即从两个状态转移过来都可以// 所以写两个并列的if,可以都加if(t==f[j]) s+=g[j];if(t==f[j-v]+w) s+=g[j-v];if(s>=mod) s-=mod; // 手动取模f[j]=t;g[j]=s;}}int maxw=0;// 求最优解,最优解不一定是m,因为物理意义变了for(int i=0;i<=m;i++) maxw=max(maxw,f[i]);int res=0;// 求总的方案数for(int i=0;i<=m;i++) {if(maxw==f[i]) {res+=g[i];if(res>=mod) res-=mod;}}cout<<res<<endl;return 0;
}
5)背包求具体方案
时间复杂度: O ( n 2 ) O(n^2) O(n2),空间复杂度: O ( n 2 ) O(n^2) O(n2)
#include<bits/stdc++.h>
#define x first
#define y secondusing namespace std;typedef long long ll;
typedef pair<int,int> PII;// 解题思路: 要求输出字典序最小的一种选法(123<31)按位比
// 看f[n][m]是从哪个状态转移过来的,若为f[n-1][m](没选),若为f[n-1][m-v[i]]+w[i](选了)
// 贪心求,如果能选第一个物品,那么必须选第一个物品,这样字典序是最小的,前面的物品能选则选
// 从后往前推,求方案从前往后推const int N=1e3+5;
int n,m;
int v[N],w[N],f[N][N]; // 前i个物品中背包容量不超过j的方案int main() {cin>>n>>m;for(int i=1;i<=n;i++) {scanf("%d%d",&v[i],&w[i]); }// 从后往前推,这样求出来的方案才是字典序最小的for(int i=n;i>=1;i--) {// 二维for(int j=0;j<=m;j++) {f[i][j]=f[i+1][j];if(j>=v[i]) {f[i][j]=max(f[i][j],f[i+1][j-v[i]]+w[i]);}}}int i=1,j=m; // 从后往前推,最大值是f[1][m]// 从前往后推最大值while(i<=n) {if(j>=v[i] && f[i+1][j-v[i]]+w[i]>=f[i+1][j]) {cout<<i<<' ';j-=v[i];i++;} else {i++;}}return 0;
}
这篇关于【C++算法模板】背包九讲(下):混合背包、二维费用背包、带依赖的背包、背包求方案数、背包求具体方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!