2D图片3秒变立体,Adobe实习生的智能景深算法,登上顶级期刊

本文主要是介绍2D图片3秒变立体,Adobe实习生的智能景深算法,登上顶级期刊,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

来源:本文经AI新媒体量子位(公众号 ID: QbitAI)授权转载

本文约2500字,建议阅读8分钟

本文为你介绍了Adobe放出的新魔法,2-3秒拍出立体感。

640?wx_fmt=gif

你离礁石越来越近,仿佛还有一秒就要触礁了。

不过这张动图,并不是从人类拍摄的视频里截下来的。

是Adobe放出的新魔法,把这张静态照片变出了立体感,整个过程只需要2-3秒:

640?wx_fmt=gif

这种特效处理,常常用于纪录片等视频的后期制作,名为Ken Burns Effect。

原本只是2D缩放 (下图左) ,通过对静止图像的平移和缩放,来产生视差,从而实现动画效果。

640?wx_fmt=gif

但Adobe这种3D效果 (上图右) ,不仅有平移和缩放,还有视角转换,给人更沉浸的体验。

想要实现,需要专业的设计师在Photoshop等软件中花费数个小时时间。

而且制作成本也很高,一张照片大概需要40-50美元 (约合人民币280-350元) 。

Adobe也登上了ACM主办的计算机图形学顶级期刊TOG,引发了大量讨论与关注。不乏有激动的网友给出“三连”:
Incredible. Amazing. Holy shit.

完全不是简单的缩放

透视原理决定,前景比背景的移动/缩放更剧烈。

所以,前景移动的时候,背景除了移动,也要跟着修复。

AI的背景修复十分自然,手法明显比“前辈”更高超:

640?wx_fmt=gif
△形状有点奇怪的教堂

并且,不论背景简单复杂,AI都不怕。

比如,走到沙发跟前,沙发就挡住了后面窗户外的草地:

640?wx_fmt=gif

背景的色彩和结构都很复杂,但AI并没有蒙蔽。

如果你觉得,刚才的视角变化只是由远及近,不够复杂。那就看一眼这古老的台阶吧:

640?wx_fmt=gif

仿佛你打算走上台阶,所以正在朝着它的方向,慢慢转身。

除此之外,一条古老的走廊,你置身其中,好像正在从上仰的视角,变得平视前方。

640?wx_fmt=gif

当然,不只是风景,人像也可以处理。

比如,草地上的新娘,可以远观,也可以近距离欣赏:

640?wx_fmt=gif

就像开头说的那样,所有的变换,只靠一张静态图来完成。

这自然不是普通的缩放可以做到的:

640?wx_fmt=gif
△ 左为普通缩放,右为3D魔法

所以,究竟是怎样的技术做到的?

三步定边界,结合上下文感知

用单个图像合成逼真的相机移动的效果要解决两个基本问题。

首先,要设置一个新的相机位置,合成新视图,并且需要准确地恢复原始视图的场景几何结构。

其次,根据预测的场景几何结构,要将新视图在连续的时间线上合成,这就涉及到去遮挡这样的图像修复手段。

640?wx_fmt=png

研究人员们用了三个神经网络来构建处理框架。

用以训练的数据集是用计算机生成的。研究人员从UE4 Marketplace2收集了32种虚拟环境,用虚拟摄像机在32个环境中捕获了134041个场景,包括室内场景,城市场景,乡村场景和自然场景。每个场景包含4个视图,每个视图都包含分辨率为512×512像素的颜色、深度和法线贴图。

640?wx_fmt=png

指定一张高分辨率图像,首先根据其低分辨率版本估计粗糙深度。这一步由VGG-19来实现,根据VGG-19提取的语义信息指导深度估计网络的训练,并用具有ground truth的计算机合成数据集进行监督。如此,就能提取出原始图像的深度图。

第二个网络,是Mask R-CNN。为了避免语义失真,平行于VGG-19,用Mask R-CNN对输入的高分辨率图像进行分割,而后用分割的结果来对深度图进行调整,以确保图中的每个对象都映射到一个相干平面上。

最后,利用深度细化网络,参考输入的高分辨率图像,对提取出的粗糙深度进行上采样,确保深度边界更加精确。

640?wx_fmt=png

之所以要采用深度细化网络,是因为裁切对象的过程中,对象很可能在边界处被撕开。

有了从输入图像获得的点云和深度图(注:点云指通过3D扫描得到的物品外观表面的点数据集合),就可以渲染连续的新视图了。

不过,这里又会出现一个新的问题——当虚拟摄像机向前移动的时候,对象本身会产生裂隙(下图中高塔右侧像被网格切开了)。

640?wx_fmt=png

为了解决这个问题,研究人员采取了结合上下文感知修复的方法。

结合上下文信息能够产生更高质量的合成视图。上下文信息划定了相应像素在输入图像中位置的邻域,因此点云中的每个点都可以利用上下文信息来进行扩展。

具体而言,第一步,是进行颜色和深度图像修复,以从不完整的渲染中恢复出完整的新视图,其中每个像素都包含颜色,深度和上下文信息。

而后,利用图像修复深度,将图像修复颜色映射到点云中新的色调点。

重复这一过程,直到点云充分扩展,填补空隙,可以实时地呈现完整且连续的画面。

640?wx_fmt=png


“用过都说好”

研究人员觉得好,那不算好。新方法效果如何,还是用户说了算。

于是,研究团队搞出了一个“非正式用户调研”。他们在YouTube上搜集了30个人类创造的3D Ken Burns视频,将其分成“风景”,“肖像”,“室内”,“人造室外环境”四组,每组随机抽取三个视频作为样本。

8位志愿者参与到了这个测试之中。团队为每个志愿者分配了一张静态图,并提供了人类作品作为参考,要求志愿者使用新方法和Adobe After Effects模板、移动App Viewmee这两种Ken Burns制作工具创作类似的效果。

志愿者会依据自己的主观意见评价每种工具的可用性和质量。

640?wx_fmt=png

在志愿者们看来,不论是从效果上,还是易用性上,Adobe的这个新工具显然好得多。

来自Adobe的实习生(现已转Google)

这项研究的第一作者,是一名波特兰州立大学的博士生,名为Simon Niklaus,研究方向为计算机视觉与深度学习。

他在Adobe Research实习的时候完成了这项工作,目前他正在Google实习。

640?wx_fmt=png

他的博士生导师,名为Feng Liu,博士毕业于威斯康辛大学麦迪逊分校,现在是波特兰州立大学的助理教授,也是这一研究的做作者之一。

此外,这项研究还有另外两名作者,分别是Long Mai和Jimei Yang,都是Adobe的研究科学家。

640?wx_fmt=png

Simon Niklaus在Hacker News上与网友互动时也谈到了研究的开源计划。

他说,自己计划公布代码以及数据集,但还没有得到批准。因为这项工作是“实习生”完成的, Adobe在开源方面都比较大度。

当然,这也无法排除他们商业化的可能性,如果你对这一研究感兴趣,可以先看下研究论文:

3D Ken Burns Effect from a Single Imagehttps://arxiv.org/abs/1909.05483

One more thing……

关于Ken Burns Effect,也有一段乔布斯的往事。

为了将这一特效用到苹果中,乔布斯还专程联系了Ken Burns,希望能够得到他的许可。

一开始,Burns是拒绝的,他不想自己的名字被商业化。

但后来,Burns透露,他同意了乔布斯的请求。

640?wx_fmt=jpeg

这中间到底发生了什么,也没有太多信息传递出来。

现在,这一效应在iPhone中应用非常广泛,比如照片的“回忆”功能,就能够自动利用这一特效,把一张张照片制作成视频。

这也给Burns带来了很多“麻烦”。

他说,有时候自己走在街上,会有陌生人冲到他面前,说自己如何在iPhone上使用它,或者是问他问题。

对于这种情况,他说自己都是尽力快速逃离现场。跟明星遇上私生饭差不多。

emmm……

— 完 —

编辑:王菁
校对:林亦霖

这篇关于2D图片3秒变立体,Adobe实习生的智能景深算法,登上顶级期刊的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901489

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费