数模 线性规划模型理论与实践

2024-04-13 22:04

本文主要是介绍数模 线性规划模型理论与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性规划模型理论与实践

1.1 线性规划问题

  • 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支一数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
  • 自从1947年 G . B . D a n t z i g G.B.Dantzig G.B.Dantzig提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1.1 线性规划的实例与定义

1.实例:某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4千元与3千元。生产甲机床需用4、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产 x 1 x_1 x1台甲机床和 x 2 x_2 x2台乙机床时总利润最大,则 x 1 , x 2 x_1,x_2 x1,x2应满足
m a x z = 4 x 1 + 3 x 2 (1.1) max\ \ z=4x_1+3x_2\tag{1.1} max  z=4x1+3x2(1.1)

{ 2 x 1 + x 2 ≤ 10 x 1 + x 2 ≤ 8 x 2 ≤ 7 x 1 , x 2 ≥ 0 (1.2) \begin{cases} 2x_1+x_2\le10 \\ x_1+x_2\le8\\ x_2\le7\\ x_1,x_2\ge0 \end{cases}\tag{1.2} 2x1+x210x1+x28x27x1,x20(1.2)

变量 x 1 , x 2 x_1,x_2 x1,x2称之为决策变量,(1.1)式被称为问题的目标函数,(1.2)中的几个不等式是问题的约束条件,记为s.t(即subject to)。

2.定义:

  • 目标函数及约束条件均为线性函数,故被称为线性规划问题。线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
  • 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,往往也是很困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。

1.1.2 线性规划问题的解的概念

1. M a t l a b Matlab Matlab中求解线性规划的基本公式:下式一般求最小值,要求最大值在目标函数前加一个负号即可
m i n x c T x \underset{x}{min}\ \ c^Tx xmin  cTx

s . t . { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b s.t.\ \ \begin{cases} Ax\le b \\ Aeq\cdot x = beq\\ lb\le x\le ub \end{cases} s.t.   AxbAeqx=beqlbxub

其中c和x为n维向量, A 、 A e q A、Aeq AAeq为适当维数的矩阵, b 、 b e q b、beq bbeq为适当维数的列向量。

  • 第一个式子是目标函数的简化形式;
  • 第二个式子是所有不等式的集合;
  • 第三个式子是所有等的集合;
  • 第四个式子是决策变量的取值范围。

2.一般线性规划问题的(数学)标准型为:
m a x z = ∑ j = 1 n c j x j (1.3) max\ \ z=\sum_{j=1}^nc_jx_j\tag{1.3} max  z=j=1ncjxj(1.3)

s . t . { ∑ j = 1 n a i j x j = b i i = 1 , 2 , 3 , . . . , m x j ≥ 0 j = 1 , 2 , 3 , . . . , n (1.4) s.t.\ \ \begin{cases} \overset{n}{\underset{j=1}{\sum}} a_{ij}x_j=b_i\ \ \ i=1,2,3,...,m \\ \\ x_j\ge0\ \ \ j=1,2,3,...,n \end{cases}\tag{1.4} s.t.   j=1naijxj=bi   i=1,2,3,...,mxj0   j=1,2,3,...,n(1.4)

3.基础概念:

  • 可行解:满足约束条件(1.4)的解 x = [ x 1 , x n ] T x=[x_1,x_n]^T x=[x1,xn]T,称为线性规划问题的可行解。
  • 最优解:使目标函数(1.3)达到最大值的可行解叫最优解。
  • 可行域:所有可行解构成的集合称为问题的可行域,记为R。

1.1.3 线性规划的 M a t l a b Matlab Matlab标准形式及软件求解

1.线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便, M a t l a b Matlab Matlab中规定线性规划的标准形式为:
m i n x c T x \underset{x}{min}\ \ c^Tx xmin  cTx

s . t . { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b s.t.\ \ \begin{cases} Ax\le b \\ Aeq\cdot x = beq\\ lb\le x\le ub \end{cases} s.t.   AxbAeqx=beqlbxub

其中, c , x , b , b e q , l b , u b c,x,b,beq,lb,ub c,x,b,beq,lb,ub为列向量, f f f称为价值向量, b b b称为资源向量, A 、 A e q A、Aeq AAeq为矩阵。

2. M a t l a b Matlab Matlab 中求解线性规划的命令为:

[x,fval]=linprog(c,A,b)
[x,fval]=linprog(c,A,b,Aeq,beq)
[x,fval]= linprog(c,A,b,Aeq,beq,lb,ub)

其中 x x x返回的是决策向量的取值, f v a l fval fval返回的是目标函数的最优值, c c c为价值向量, A , b A,b A,b对应的是线性不等式约束, A e q , b e q Aeq,beq Aeq,beq对应的是

线性等式约束, l b lb lb u b ub ub分别对应的是决策向量的下界向量和上界向量。

3.实例速递:( M a t l a b Matlab Matlab只能求最小值,最大值不是标准形式)

其中,所有的系数都加上了一个负号是因为在用 M a t l a b Matlab Matlab求解最大值。

1.1.4 可以转化为线性规划问题------构造

1.例题:

1.2 投资的收益和风险

1.2.1 问题提出

1.2.2 符号规定和基本假设

1.符号规定:

2.基本假设:

  • 投资数额 M M M相当大,为了便于计算,假设 M = 1 M=1 M=1
  • 投资越分散,总的风险越小;
  • 总体风险用投资项目 S i S_i Si中最大的一个风险来度量;
  • n + 1 n+1 n+1种资产 S i S_i Si之间是相互独立的;
  • 在投资的这一期间内, r i , p i , q i r_i,p_i,q_i ri,pi,qi为定值,不受意外因素影响;
  • 净收益和总体风险只受 r i , p i , q i r_i,p_i,q_i ri,pi,qi​影响,不受其它因素干扰。

1.2.3 模型的分析与建立

1.总体风险用所投资的 S i S_i Si中最大的一个风险来衡量,即
m a x { q i x i ∣ i = 1 , 2 , L , n } max\{q_ix_i|i=1,2,L,n\} max{qixii=1,2,L,n}
2.购买 S i ( i = 1 , L , n ) S_i(i=1,L,n) Si(i=1,L,n)所付交易费是一个分段函数,即
交易费 = { p i x i , x i ≥ u i p i u i , x i ≤ u i 交易费= \begin{cases} p_ix_i,\ \ \ x_i\ge u_i \\ p_iu_i,\ \ \ x_i\le u_i \end{cases} 交易费={pixi,   xiuipiui,   xiui
而题目i所给的定值 u i u_i ui(单位:元)相对总投资 M M M很少, p i u i p_iu_i piui更小,这样购买 S i S_i Si的净收益可以简化为 ( r i − p i ) x i (r_i-p_i)x_i (ripi)xi

3.要使净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型。

目标函数为:
{ m a x ∑ i = 0 n ( r i − p i ) x i m i n m a x { q i x i } ( ) \begin{cases} max\ \overset{n}{\underset{i=0}{\sum}}(r_i-p_i)x_i\\ min\ \ max\{q_ix_i\}() \end{cases} max i=0n(ripi)ximin  max{qixi}()
约束条件为:
{ ∑ i = 0 n ( 1 + p i ) x i = M x i ≥ 0 , i = 0 , 1 , . . . , n \begin{cases} \overset{n}{\underset{i=0}{\sum}}(1+p_i)x_i=M\\ x_i\ge0,\ \ i=0,1,...,n \end{cases} i=0n(1+pi)xi=Mxi0,  i=0,1,...,n
这是一个多模规划,不仅要找到净收益的最大值,还要找到风险评估的最小值,所以我们要把多模规划化简到单目标线性规划。

4.一共有三种方法:

①在实际投资中,投资者承受的风险程度不一样,若给定一个界限a,使最大的一个风险 q i x i M ≤ a \dfrac{q_ix_i}{M}\le a Mqixia,可以找到相应的投资方案,这样就把多目标规划变成一个目标的线性规划。

  • 模型一:固定风险水平,优化收益

  • 模型二:固定盈利水平,极小化风险

②投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意的投资组合。因此对风险、收益分别赋予权重s(0<s≤1)和(1-s),s称为投资偏好系数。

  • 模型三:综合考虑

1.2.4 模型求解

1.以模型一求解为例:

由于a是任意给定的风险度,到底怎样没有一个准则,不同的投资者有不同的风险度。我们从a=0开始,以步长 Δ a = 0.001 \Delta a=0.001 Δa=0.001进行循环搜索,编制程序如下:

通过 M a t l a b Matlab Matlab运行可以得到下图所示的结果:

通过上图可以看出:

  • 风险大,收益也大;
  • 当投资越分散时,投资者承担的风险越小,这与题意一致。冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资;
  • 在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的转折点作为最优投资组合,大约是a=0.6%,Q=20%,所对应投资方案为:
    风险度a=0.006,收益Q=0.2019, x 0 = 0 x_0=0 x0=0 x 1 = 0.24 x_1=0.24 x1=0.24 x 2 = 0.4 x_2=0.4 x2=0.4 x 3 = 0.1091 x_3= 0.1091 x3=0.1091 x 4 = 0.2212 x_4= 0.2212 x4=0.2212

这篇关于数模 线性规划模型理论与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901341

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

OpenCompass:大模型测评工具

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factor

模型压缩综述

https://www.cnblogs.com/shixiangwan/p/9015010.html

9 个 GraphQL 安全最佳实践

GraphQL 已被最大的平台采用 - Facebook、Twitter、Github、Pinterest、Walmart - 这些大公司不能在安全性上妥协。但是,尽管 GraphQL 可以成为您的 API 的非常安全的选项,但它并不是开箱即用的。事实恰恰相反:即使是最新手的黑客,所有大门都是敞开的。此外,GraphQL 有自己的一套注意事项,因此如果您来自 REST,您可能会错过一些重要步骤!

AI赋能天气:微软研究院发布首个大规模大气基础模型Aurora

编者按:气候变化日益加剧,高温、洪水、干旱,频率和强度不断增加的全球极端天气给整个人类社会都带来了难以估计的影响。这给现有的天气预测模型提出了更高的要求——这些模型要更准确地预测极端天气变化,为政府、企业和公众提供更可靠的信息,以便做出及时的准备和响应。为了应对这一挑战,微软研究院开发了首个大规模大气基础模型 Aurora,其超高的预测准确率、效率及计算速度,实现了目前最先进天气预测系统性能的显著