收藏 | 神经网络的 5 种常见求导,附详细的公式过程

2024-04-13 19:18

本文主要是介绍收藏 | 神经网络的 5 种常见求导,附详细的公式过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

20edd45b1d19f2c625f8efe7f8b07a02.png

来源:机器学习与生成对抗网络
本文约1800字,建议阅读5分钟 
本文为你介绍5种常见求导的详细过程!

01 derivative of softmax

1.1 derivative of softmax

一般来说,分类模型的最后一层都是softmax层,假设我们有一个  分类问题,那对应的softmax层结构如下图所示(一般认为输出的结果  即为输入  属于第i类的概率):

5de7c76a170fd76c800836c7e3f68558.png

假设给定训练集  ,分类模型的目标是最大化对数似然函数  。

通常来说,我们采取的优化方法都是gradient based的(e.g., SGD),也就是说,需要求解  。而我们只要求得  ,之后根据链式法则,就可以求得  ,因此我们的核心在于求解  。

由上式可知,我们只需要知道各个样本  的  ,即可通过求和求得  ,进而通过链式法则求得  。因此下面省略样本下标j,仅讨论某个样本  。

实际上对于如何表示  属于第几个类,有两种比较直观的方法:

  • 一种是直接法(i.e., 用  来表示x属于第3类),则  ,其中  为指示函数;

  • 另一种是one-hot法(i.e., 用  来表示x属于第三类),则  ,其中  为向量  的第  个元素。

  • p.s., 也可以将one-hot法理解为直接法的实现形式,因为one-hot向量实际上就是  。

为了方便,本文采用one-hot法。于是,我们有:

1.2 softmax & sigmoid

再补充一下softmax与sigmoid的联系。当分类问题是二分类的时候,我们一般使用sigmoid function作为输出层,表示输入  属于第1类的概率。

然后利用概率和为1来求解  属于第2类的概率,即

乍一看会觉得用sigmoid做二分类跟用softmax做二分类不一样:

  • 在用softmax时,output的维数跟类的数量一致,而用sigmoid时,output的维数比类的数量少;

  • 在用softmax时,各类的概率表达式跟sigmoid中的表达式不相同。

但实际上,用sigmoid做二分类跟用softmax做二分类是等价的。我们可以让sigmoid的output维数跟类的数量一致,并且在形式上逼近softmax。

通过上述变化,sigmoid跟softmax已经很相似了,只不过sigmoid的input的第二个元素恒等于0(i.e., intput为  ),而softmax的input为  ,下面就来说明这两者存在一个mapping的关系(i.e., 每一个  都可以找到一个对应的  来表示相同的softmax结果。不过值得注意的是,反过来并不成立,也就是说并不是每个  仅仅对应一个  )。

因此,用sigmoid做二分类跟用softmax做二分类是等价的。

02 backpropagation

一般来说,在train一个神经网络时(i.e., 更新网络的参数),我们都需要loss function对各参数的gradient,backpropagation就是求解gradient的一种方法。

07da776aa6729539ad9ad3c62e3a4499.png

假设我们有一个如上图所示的神经网络,我们想求损失函数  对  的gradient,那么根据链式法则,我们有

而我们可以很容易得到上述式子右边的第二项,因为  ,所以有

其中,  是上层的输出。

而对于式子右边的的第一项,可以进一步拆分得到

我们很容易得到上式右边第二项,因为  ,而激活函数  (e.g., sigmoid function)是我们自己定义的,所以有

其中,  是本层的线性输出(未经激活函数)。

a4553d493229f52ea857ced1d4f79b64.png

观察上图,我们根据链式法则可以得到


其中,根据  可知

  和  的值是已知的,因此,我们离目标  仅差  和  了。接下来我们采用动态规划(或者说递归)的思路,假设下一层的  和  是已知的,那么我们只需要最后一层的graident,就可以求得各层的gradient了。而通过softmax的例子,我们知道最后一层的gradient确实可求,因此只要从最后一层开始,逐层向前,即可求得各层gradient。

因此我们求  的过程实际上对应下图所示的神经网络(原神经网络的反向神经网络):

3368b032e9cd7372bd425ddf78566947.png

综上,我们先通过神经网络的正向计算,得到  以及  ,进而求得  和  ;然后通过神经网络的反向计算,得到  和  ,进而求得  ;然后根据链式法则求得  。这整个过程就叫做backpropagation,其中正向计算的过程叫做forward pass,反向计算的过程叫做backward pass。

03 derivative of CNN

卷积层实际上是特殊的全连接层,只不过:

神经元中的某些  为  ;

神经元之间共享  。

具体来说,如下图所示,没有连线的表示对应的w为0:

2c6b604f73d08a399073462e2f8a13c6.png

如下图所示,相同颜色的代表相同的  :

7feec11722e297ec7f4ad8c9a85b24d9.png

因此,我们可以把loss function理解为  ,然后求导的时候,根据链式法则,将相同w的gradient加起来就好了。

在求各个  时,可以把他们看成是相互独立的  ,那这样就跟普通的全连接层一样了,因此也就可以用backpropagation来求。

04 derivative of RNN

RNN按照时序展开之后如下图所示(红线表示了求gradient的路线):

bff90b86634aa7ca5830c36ece9fd846.png

跟处理卷积层的思路一样,首先将loss function理解为  ,然后把各个w看成相互独立,最后根据链式法则求得对应的gradient。

由于这里是将RNN按照时序展开成为一个神经网络,所以这种求gradient的方法叫Backpropagation Through Time(BPTT)。


05 derivative of max pooling

一般来说,函数  是不可导的,但假如我们已经知道哪个自变量会是最大值,那么该函数就是可导的(e.g., 假如知道y是最大的,那对y的偏导为1,对其他自变量的偏导为0)。

而在train一个神经网络的时候,我们会先进行forward pass,之后再进行backward pass,因此我们在对max pooling求导的时候,已经知道哪个自变量是最大的,于是也就能够给出对应的gradient了。

references:

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

编辑:王菁

校对:林亦霖2922f19217b3ee2960601d815066ce53.png

这篇关于收藏 | 神经网络的 5 种常见求导,附详细的公式过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900987

相关文章

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基