著名统计学家David Cox去世:他提出的「COX回归模型」曾影响一代人

本文主要是介绍著名统计学家David Cox去世:他提出的「COX回归模型」曾影响一代人,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

944b75c311dbaac07dc8a1d087ea5f07.png

来源:机器之心
本文约1000字,建议阅读5分钟
他提出的「COX 回归模型」曾深刻地影响了统计学研究。

近日,英国著名统计学家 David Cox 去世,享年 97 岁。

c2e7ee263f40953c86fe14e282e20212.png

David Cox 因提出「COX 回归模型」而广为人知,并深刻地影响了统计学领域的研究。许多人自发地在社交媒体平台表达了悲痛和哀悼:

58918fe276bbc958408c7bb532cb2add.png

dbbab9edaba3774ca6bbdd21f5447425.png

323a992866144f0bc3a20fe4271e1ca1.png

David Cox 生平

David Cox1924 年出生于英国伯明翰,在剑桥大学圣约翰学院学习数学,并在 Henry Daniels 和 Bernard Welch 的指导下于 1949 年在利兹大学获得博士学位。

f85c19b0f1e9e5eee002bc0404df7daf.png

1950 年到 1956 年期间,David Cox 在剑桥大学的统计实验室工作。1956 年到 1966 年,他在伦敦大学伯贝克学院担任「Reader」和统计学教授。1966 年,他担任伦敦帝国理工学院统计学系主任,后来成为数学系主任。1988 年,成为纳菲尔德学院的院长和牛津大学统计系的成员,最后于 1994 年正式退休。

David Cox 在统计和应用概率方面做出了开创性的贡献,主要学术贡献包括 Cox 过程,以及影响深远且应用广泛的 Cox 比例风险模型等。

David Cox 曾任国际统计协会、伯努利数理统计与概率学会、英国皇家统计学会主席。同时,他还是英国皇家学会院士暨英国社会科学院院士,美国科学院、丹麦皇家科学院外籍院士。

因其做出的重要贡献,David Cox 获得皇家统计学会的盖伊奖章(1961 年)和金奖(1973 年),并于 1985 年被英国女王伊丽莎白二世封为爵士。2010 年,他因「对统计理论和应用的开创性贡献」而被授予英国皇家学会科普利奖章。他也是第一个获得国际统计奖(International Prize in Statistics)的人(2017 年)。

Cox 回归模型

生存分析的统计学领域涉及到一个特定事件发生之前的时间间隔,比如机械故障或者病人死亡。此处发生故障或者病人死亡的比率称为危险函数。

在 1972 年引入的 Cox 比例风险回归模型中,David Cox 提出了一个风险函数,该风险函数分为时间依赖和时间独立两部分。

03d7b02e9f63b46bc3c0be3826f83145.png

论文链接:

https://rss.onlinelibrary.wiley.com/share/XB97VAHIGECJZEBBBTWZ?target=10.1111/j.2517-6161.1972.tb00899.x

该模型通常用于医学研究中分析一个或多个前定变量对患者生存时间的影响。由于将依赖时间的输入与不依赖时间的输入分开,医学数据的分析得以大幅简化,Cox 模型在医学研究中得到了广泛的应用。据谷歌学术不完全统计,这篇文章的引用率目前超过 56612 次,也是迄今生存分析中应用最多的多因素分析方法。

97c943ff3c30f5ca8ff5cdfa32a7c807.png

2014 年 10 月,在《Nature》杂志评出的引用次数最多的 100 篇论文之中,Cox 回归成为「引用率最高的三篇统计学论文」之一。

此外,David Cox 著有许多统计学领域的书籍,包括随机过程理论(与 H.D.Miller 合著,1965 年) ,理论统计(与 d.v. Hinkley 合著,1974 年) ,生存数据分析(与 David Oakes 合著,1984 年) ,以及推论统计学原理(2006 年)。

d9cd2ec1fbd2f07a04cd826280c558bc.png

这篇关于著名统计学家David Cox去世:他提出的「COX回归模型」曾影响一代人的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900965

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU