将公平注入AI:机器学习模型即使在不公平数据上训练也能产生公平输出

2024-04-13 18:48

本文主要是介绍将公平注入AI:机器学习模型即使在不公平数据上训练也能产生公平输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

c7bdb4183f59927f86f6b4accf5ec58c.png

来源:ScienceAI
本文约1800字,建议阅读9分钟
如何迫使深度度量学习模型首先学习好的特征?

cf1fae2b31d6f9d5bca32058430db02f.png

如果使用不平衡的数据集训练机器学习模型,比如一个包含远多于肤色较浅的人的图像的数据集,则当模型部署在现实世界中时,该模型的预测存在严重风险。

但这只是问题的一部分。麻省理工学院的研究人员发现,在图像识别任务中流行的机器学习模型在对不平衡数据进行训练时实际上会编码偏差。即使使用最先进的公平性提升技术,甚至在使用平衡数据集重新训练模型时,模型中的这种偏差也无法在以后修复。

因此,研究人员想出了一种技术,将公平性直接引入模型的内部表示本身。这使模型即使在不公平数据上进行训练也能产生公平的输出,这一点尤其重要,因为很少有平衡良好的数据集用于机器学习。

他们开发的解决方案不仅可以使模型做出更平衡的预测,还可以提高它们在面部识别和动物物种分类等下游任务中的表现。

ff1ef8b67e38623f3920cb9ead2cff16.png

「在机器学习中,将数据归咎于模型偏差是很常见的。但我们并不总是有平衡的数据。因此,我们需要找到真正解决数据不平衡问题的方法,」主要作者、麻省理工学院计算机科学与人工智能实验室 (CSAIL) 健康 ML 小组的研究生 Natalie Dullerud 说。

定义公平

研究人员研究的机器学习技术被称为深度度量学习(deep metric learning),它是表示学习的一种广泛形式。在深度度量学习中,神经网络通过将相似的照片映射在一起并且将不同的照片映射得很远来学习对象之间的相似性。在训练期间,该神经网络将图像映射到「嵌入空间」中,其中照片之间的相似性度量对应于它们之间的距离。

例如,如果使用深度度量学习模型对鸟类进行分类,它会将金雀的照片一起映射到嵌入空间的一部分中,并将红雀的照片映射到嵌入空间的另一部分中。一旦经过训练,该模型就可以有效地测量它以前从未见过的新图像的相似性。它会学习将看不见的鸟类的图像聚集在一起,但在嵌入空间内离红雀或金雀更远。

1edbaa21e1f43d152f5a5cb03a515e94.png

这张图片显示了鸟类颜色的两个不同的 PARADE 嵌入

Dullerud 说,模型学习的相似性度量非常稳健,这就是为什么深度度量学习经常被用于面部识别的原因。但她和她的同事想知道如何确定相似性指标是否有偏差。

「我们知道数据反映了社会进程的偏见。这意味着我们必须将重点转移到设计更适合现实的方法上。」Ghassemi 说。

研究人员定义了相似性度量不公平的两种方式。以面部识别为例,如果与那些图像是肤色较浅的人相比,如果将肤色较深的人更靠近彼此嵌入,即使他们不是同一个人,该指标将是不公平的。其次,如果它学到的用于衡量相似性的特征对于多数群体来说比少数群体更好,那将是不公平的。

研究人员对具有不公平相似性指标的模型进行了许多实验,但无法克服模型在其嵌入空间中学到的偏差。

「这很可怕,因为公司发布这些嵌入模型,然后人们对它们进行微调以完成一些下游分类任务是一种非常普遍的做法。但无论你在下游做什么,你根本无法解决嵌入空间中引发的公平问题,」Dullerud 说。

她说,即使用户在下游任务的平衡数据集上重新训练模型(这是解决公平问题的最佳情况),仍然存在至少 20% 的性能差距。

解决这个问题的唯一方法是确保嵌入空间一开始是公平的。

学习单独的指标

研究人员的解决方案称为部分属性去相关 (PARADE),涉及训练模型以学习敏感属性(如肤色)的单独相似性度量,然后将肤色相似性度量与目标相似性度量去相关。如果模型正在学习不同人脸的相似度度量,它将学习使用肤色以外的特征来映射靠近在一起的相似面孔和相距很远的不同面孔。

任何数量的敏感属性都可以通过这种方式与目标相似度度量去相关。并且由于敏感属性的相似性度量是在单独的嵌入空间中学习的,所以在训练后将其丢弃,因此模型中仅保留了目标相似性度量。

他们的方法适用于许多情况,因为用户可以控制相似性度量之间的去相关量。例如,如果模型将通过乳房 X 光照片诊断乳腺癌,临床医生可能希望在最终嵌入空间中保留一些有关生物性别的信息,因为女性患乳腺癌的可能性比男性高得多,Dullerud 解释说。

他们在面部识别和鸟类分类这两项任务上测试了他们的方法,发现无论他们使用什么数据集,它都能减少嵌入空间和下游任务中由偏差引起的性能差距。

展望未来,Dullerud 感兴趣的是如何迫使深度度量学习模型首先学习好的特征。

「您如何正确审核公平性?这是一个悬而未决的问题。你怎么知道一个模型是公平的,或者它只在某些情况下是公平的,那些情况是什么?这些是我真正感兴趣的问题,」她说。

参考内容:

https://scitechdaily.com/injecting-fairness-into-ai-machine-learning-models-that-produce-fair-outputs-even-when-trained-on-unfair-data/

https://openreview.net/pdf?id=js62_xuLDDv

编辑:黄继彦

校对:林亦霖

3293202579d0055c540d5672921d591f.png

这篇关于将公平注入AI:机器学习模型即使在不公平数据上训练也能产生公平输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900925

相关文章

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt