本文主要是介绍网易--幸运的袋子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目描述
一个袋子里面有n个球,每个球上面都有一个号码(拥有相同号码的球是无区别的)。如果一个袋子是幸运的当且仅当所有球的号码的和大于所有球的号码的积。
例如:如果袋子里面的球的号码是{1, 1, 2, 3},这个袋子就是幸运的,因为1 + 1 + 2 + 3 > 1 * 1 * 2 * 3
你可以适当从袋子里移除一些球(可以移除0个,但是别移除完),要使移除后的袋子是幸运的。现在让你编程计算一下你可以获得的多少种不同的幸运的袋子。
输入描述:
第一行输入一个正整数n(n ≤ 1000)
第二行为n个数正整数xi(xi ≤ 1000)
输出描述:
输出可以产生的幸运的袋子数
示例1
输入
3
1 1 1
输出
2
思路一
最开始想的是回溯(DFS),结果超时了,因为会存在重复的计算。
import java.util.Scanner;
import java.util.ArrayList;
import java.util.Arrays;public class Main{private static int res = 0;public static void main(String[] args){Scanner in = new Scanner(System.in);int n = in.nextInt();int nums[] = new int[n];//boolean[] seen = new boolean[n];for(int i = 0;i < n;i++) nums[i] = in.nextInt();Arrays.sort(nums);backtrack(nums, new ArrayList<Integer>(), 0);System.out.println(res);}private static void backtrack(int[] nums, ArrayList<Integer> list, int start){if(list.size() >= 2){if(isLucky(list)) res++;}for(int i = start;i < nums.length;i++){if(i > start && nums[i] == nums[i - 1]) continue;list.add(nums[i]);//seen[i] = true;backtrack(nums, list, i + 1);list.remove(list.size() - 1);//seen[i] = false;}}private static boolean isLucky(ArrayList<Integer> list){int sum = 0;int product = 1;for(int i : list){sum += i;product *= i;}return sum > product;}
}
思路二
题目可以转化成求符合条件的集合真子集个数。每次从全集中选择若干元素(小球)组成子集(袋子)。集合子集个数为2^n个,使用dfs必然超时。且此题有重复元素,那么就搜索剪枝。
对于任意两个正整数a,b如果满足 a+b>a*b,则必有一个数为1.可用数论证明:
设a=1+x,b=1+y,则1+x+1+y>(1+x)*(1+y),—> 1>x*y,则x,y必有一个为0,即a,b有一个为1.
推广到任意k个正整数,假设a1,a2,…ak,如果不满足给定条件,即和sum小于等于积pi,
如果此时再选择一个数b,能使其满足sum+b > pi*b,则,b必然为1,且为必要非充分条件。
反之,如果选择的b>1,则sum+b <=pi*b,即a1,a2,…,ak,b不满足给定条件。(搜索剪枝的重要依据)
因此,将球按标号升序排序。每次从小到大选择,当选择到a1,a2,…,ak-1时满足给定条件,而再增加选择ak时不满足条件(ak必然大于等于max(a1,a2,…,ak-1)),继续向后选择更大的数,必然无法满足!因此,可以进行剪枝。
如果有多个1,即当k=1时,sum(1)>pi(1)不满足,但下一个元素仍为1,则可以满足1+1>1*1,所以要判断当前ak是否等于1.
此外,对于重复数字,要去重复。
参考自:牛客网 – 小刀初试
#include<iostream>
using namespace std;//冒泡排序
void sort(int *a,int n)
{int temp=0;for(int i=0;i<n;i++){ temp=a[i];for(int j=i;j<n;j++){if(a[i]>a[j]){temp=a[i];a[i]=a[j];a[j]=temp;}}}
}
int count(int a[],int n,int pos,long long sum,long long mul)
{int num=0;for(int i=pos;i<n;i++){ sum+=a[i];mul*=a[i];if(sum>mul)num+=1+count(a,n,i+1,sum,mul);elseif(a[i]==1) //几个连续1的情况,或者说以1开头的情况num+=count(a,n,i+1,sum,mul);elsebreak;sum-=a[i];mul/=a[i];for(;i<(n-1)&&(a[i]==a[i+1]);) //跳过重复的数字i++;}return num;}
int main()
{int n;cin>>n;int a[n];for(int i=0;i<n;i++)cin>>a[i];sort(a,n);long long sum=0,mul=1;cout<<count(a,n,0,sum,mul)<<endl;}
这篇关于网易--幸运的袋子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!