Sweet Snippet 系列之 扩展欧几里得算法

2024-04-12 21:08

本文主要是介绍Sweet Snippet 系列之 扩展欧几里得算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

扩展欧几里得算法的简单实现

扩展欧几里得算法是欧几里得算法(辗转相除法)的扩展,欧几里得算法可以用于求解两个自然数(记为 a a a b b b)的最大公约数,而扩展欧几里得算法不仅可以求出 a a a b b b 的最大公约数,还能同时计算出两个整数 x x x y y y, 使它们满足等式(等式中的 g c d ( a , b ) gcd(a, b) gcd(a,b) 即表示 a a a b b b 的最大公约数):

a x + b y = g c d ( a , b ) ax + by = gcd(a, b) ax+by=gcd(a,b)

说到算法步骤的话,扩展欧几里得算法其实是逆向运用了欧几里得算法(辗转相除法)的中间结果,有兴趣的朋友可以看看 wiki 上的计算案例,在此我们简单推导一下用于计算 x x x y y y 的递推公式,以方便我们编写代码:

首先是基础条件( b = 0 b = 0 b=0 的情况)

g c d ( a , 0 ) = a a ∗ 1 + 0 ∗ a n y = g c d ( a , 0 ) = a = > { x = 1 y = 0 \begin{aligned} & gcd(a, 0) = a \\ & a * 1 + 0 * any = gcd(a, 0) = a => \\ \end{aligned} \\ \left\{ \begin{aligned} & x = 1 \\ & y = 0 \end{aligned} \right. gcd(a,0)=aa1+0any=gcd(a,0)=a=>{x=1y=0

b = 0 b = 0 b=0 的情况下,我们取 g c d ( a , 0 ) = a gcd(a, 0) = a gcd(a,0)=a, 此时 x = 1 x = 1 x=1, y y y 为任意值 都可满足之前的等式,简单起见,我们取 x = 1 , y = 0 x = 1, y = 0 x=1,y=0.

现在我们知道基础条件下 x x x y y y 的取值了,我们看看如何递推求解下一步的 x x x y y y:

a x + b y = g c d ( a , b ) b x ′ + ( a % b ) y ′ = g c d ( b , a % b ) ∵ g c d ( a , b ) = g c d ( b , a % b ) ∴ a x + b y = b x ′ + ( a % b ) y ′ = b x ′ + ( a − ⌊ a / b ⌋ b ) y ′ = a y ′ + b ( x ′ − ⌊ a / b ⌋ y ′ ) = > { x = y ′ y = x ′ − ⌊ a / b ⌋ y ′ \begin{aligned} & ax + by = gcd(a, b) \\ & bx' + (a \% b)y' = gcd(b, a \% b) \\ & \because gcd(a, b) = gcd(b, a \% b) \\ & \therefore ax + by = bx' + (a \% b)y' = \\ & bx' + (a - \lfloor a / b \rfloor b)y' = ay' + b(x' - \lfloor a / b \rfloor y') => \end{aligned} \\ \left\{ \begin{aligned} & x = y' \\ & y = x' - \lfloor a / b \rfloor y' \end{aligned} \right. ax+by=gcd(a,b)bx+(a%b)y=gcd(b,a%b)gcd(a,b)=gcd(b,a%b)ax+by=bx+(a%b)y=bx+(aa/bb)y=ay+b(xa/by)=>{x=yy=xa/by

以上便是 x x x y y y 的递推公式了,有了递推公式,代码就一目了然了(Lua):

-- return { r, x, y }
function gcd_ex(a, b)if b == 0 then-- base conditionreturn { r = a, x = 1, y = 0 }else-- recursion operationlocal ret = gcd_ex(b, a % b)local t = ret.xret.x = ret.yret.y = t - a // b * ret.yreturn retend
end

借助之前的辅助代码,我们就可以简单做测试了:

-- SimplePrintToString is from the previous post
function dump(tbl, depth)return SimplePrintToString(tbl, depth)
endprint(dump(gcd_ex(47, 30)))
参考资料
  • wiki
  • Sweet Snippet系列之 Print Lua Table

这篇关于Sweet Snippet 系列之 扩展欧几里得算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898239

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Spring组件初始化扩展点BeanPostProcessor的作用详解

《Spring组件初始化扩展点BeanPostProcessor的作用详解》本文通过实战案例和常见应用场景详细介绍了BeanPostProcessor的使用,并强调了其在Spring扩展中的重要性,感... 目录一、概述二、BeanPostProcessor的作用三、核心方法解析1、postProcessB

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系