[Caffe] - No.3 ssd-caffe(2):训练ssd-caffe模型:(以VOC数据集为例)

2024-04-12 14:32

本文主要是介绍[Caffe] - No.3 ssd-caffe(2):训练ssd-caffe模型:(以VOC数据集为例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2.训练ssd-caffe模型:(以VOC数据集为例)

使用caffe进行目标检测,我们的需要标注了标签的图片作为训练样本,训练模型。推荐使用开源的标注工具labelimg,来对我们的图片进行标注。标注之后,会产生.xml文件,用于标识图片中物体的具体信息。

这里,我们以VOC格式的数据为示例:

VOC的数据格式,主要有三个重要的文件夹:AnnotationsImageSetsJPEGImages

  • Annotations: 存放.xml标注文件

  • ImageSets/Main: 存放train.txttest.txttrainval.txtval.txt

    • test.txt中保存的是测试所用的所有样本的名字,不过没有后缀(下同),一般测试的样本数量占总数据集的50%

    • train.txt中保存的是训练所用的样本名,样本数量通常占trainval的50%左右

    • val.txt中保存的是验证所用的样本名,数量占trainval的50%左右

    • trainval.txt中保存的是训练验证样本,是上面两个的总和,一般数量占总数据集的50%

生成上述文本的代码如下:

import os  
import random  trainval_percent = 0.66  
train_percent = 0.5  
xmlfilepath = 'Annotations'  
txtsavepath = 'ImageSets\Main'  
total_xml = os.listdir(xmlfilepath)  num=len(total_xml)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(trainval,tr)  ftrainval = open('ImageSets/Main/trainval.txt', 'w')  
ftest = open('ImageSets/Main/test.txt', 'w')  
ftrain = open('ImageSets/Main/train.txt', 'w')  
fval = open('ImageSets/Main/val.txt', 'w')  for i  in list:  name=total_xml[i][:-4]+'\n'  if i in trainval:  ftrainval.write(name)  if i in train:  ftrain.write(name)  else:  fval.write(name)  else:  ftest.write(name)  ftrainval.close()  
ftrain.close()  
fval.close()  
ftest .close()
print("done")

由于caffe只能处理lmdb格式的数据,如果你有自己的数据想要放在caffe上进行训练,方式如下:

  • 自定义数据和VOC数据格式相同:直接使用VOC的数据集转换的代码转换为lmdb
  • 自定义的数据和VOC的数据格式有出入:自己写代码或者修改源码src/caffe/util/io.cpp,转换为lmdb格式

训练步骤如下,以mydataset为例:

  • 分别创建examples/mydataset,data/mydataset,data/VOCdevkit/mydataset 三个文件夹:

    • data/VOCdevkit/mydataset:将刚刚生成的Annocations等几个文件夹复制进去

    • data/mydataset:将data/VOC0712下的create_list.sh,create_data.sh,labelmap_voc.prototxt三个文件拷贝到该文件夹

    • create_list.sh:根据之前生成的ImageSets/Main中的train.txt等文件,生成具体的文件路径信息等。运行该文件夹会在当前目录生成几个txt文件

      更改create_list.sh

      9QjO0K.md.png

    • create_data.sh:生成lmdb文件,运行该文件夹,会在examples/mydataset生成

      更改create_data.sh

      9QvBB6.md.png

  • 在ssd-caffe的根目录,运行如下命令:

    ./data/mydataset/create_list.sh
    ./data/mydataset/create_data.sh

    即可生成上述提到的文件。若运行两个.sh脚本文件错误,则删除刚刚生成的文件,debug后重新运行

  • 运行成功以后,在examples/mydataset即生成lmdb文件

  • 复制examples/ssd/路径下的ssd_pascal.py文件到example/mydataset下,修改相应参数:

    • 修改所有文件夹路径为自己的路径

    • 如果本机显存太小,修改batch_size为8

    • 修改标签个数num_classes为自己的种类n+1

    (1即为添加的backgroud标签,识别为背景。另外,我们的xml标签文件中不能出现编号为0的backgrouond标注,否则会报错。这个问题在ssd-caffe的issue上也有提到,至今没有解决)

    • 修改max_iter等参数,将迭代次数减小,也可以不修改使用默认
  • 在ssd-caffe根目录下运行

    python example/mydataset/ssd_pascal.py

    等待模型运行结束

  • 复制examples/ssd/路径下的score_ssd_pascal.py文件到example/mydataset下,修改相应文件路径,即可测试模型:

    python example/mydataset/score_ssd_pascal.py

3. 调用训练完成的模型,对单张图片进行测试:

我们训练完的模型应该保存在以下路径:

models/VGGNet/mydataset/SSD_300X300

.
├── deploy.prototxt
├── solver.prototxt #超参数
├── test.prototxt
├── train.prototxt
├── VGG_mydataset_SSD_300x300_iter_55.caffemodel
└── VGG_mydataset_SSD_300x300_iter_55.solverstate

example/ssd路径下的ssd_detect.py文件复制到example/mydataset下,将输入,输出的文件路径修改为自己的路径(其中包含网络定义,模型文件,标签文件,测试图片,输出图片等)

P.S. 文章不妥之处还望指正

这篇关于[Caffe] - No.3 ssd-caffe(2):训练ssd-caffe模型:(以VOC数据集为例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897395

相关文章

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统