[大模型]Qwen1.5-7B-Chat-GPTQ-Int4 部署环境

2024-04-12 07:44

本文主要是介绍[大模型]Qwen1.5-7B-Chat-GPTQ-Int4 部署环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Qwen1.5-7B-Chat-GPTQ-Int4 部署环境

说明

Qwen1.5-72b 版本有BF16、INT8、INT4三个版本,三个版本性能接近。由于BF16版本需要144GB的显存,让普通用户忘却止步,而INT4版本只需要48GB即可推理,给普通用户本地化部署创造了机会。(建议使用4×24G显存的机器)

但由于Qwen1.5-72B-Chat-GPTQ-Int4其使用了GPTQ量化技术,对环境依赖要求严格,需要较为复杂的环境准备步骤。

在此提供环境准备教程。本教程以 Qwen1.5-7B-Chat-GPTQ-Int4为例,同样适用于其他大小的GPTQ-Int4版本。

环境准备

平台及cuda部分

在autodl平台中租一个4090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8(严格按照cuda11.8版本)
接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置。

在这里插入图片描述

说明:

  • 确保显卡驱动支持cuda11.8
  • 过程需要严格满足nvcc-pytorch-GPTQ的版本对应关系,否则GPTQ无法编译成功。

(原因见Qwen库Quantization部分,由于GPTQ工具需要严格的cuda+torch对应关系,且由于近期的升级可能带来的bug。我们保险起见选择cuda11.8,并且根据qwen库所要求的torch2.1,安装了其对应的torch,并在后面使用GPTQ源码构建以确保cuda的正确运行。)

确保nvcc可以正常工作:

nvcc -V
# 查看输出若为Cuda compilation tools, release 11.8 则跳过平台及cuda部分

如果后续由于Autodl的环境更新,无法选择cuda11.8,则可通过以下方式自行搭建cuda11.8环境。该方法已经通过测试。

# 下载驱动并安装
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run# 勾选cudatoolkit并安装
sudo sh cuda_11.8.0_520.61.05_linux.run# 添加nvcc环境变量
vim ~/.bashrc # 添加如下两行
export PATH=/usr/local/cuda-11.8/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH# 重新载入
source ~/.bashrc 
nvcc -V 

虚拟环境配置

由于base环境的torch不一定满足要求,创建虚拟环境。

# 创建虚拟环境
conda create -n qwen python==3.10# 安装指定版本pytorch
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118# 安装Qwen1.5所需依赖
pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy optimum peft transformers streamlit modelscope

从源码安装GPTQ(auto-gptq>=0.5.1),否则极易出现GPTQ无法使用cuda的情况

# 从源码安装量化所需GPTQ库
pip install "git+https://github.com/PanQiWei/AutoGPTQ.git@v0.7.1"

见Qwen库Quantization部分说明:

Note: The pre-compiled auto-gptq packages strongly depend on the version of torch and its CUDA version. Moreover, due to recent update,
you may also encounter unsupported version errors from transformers, optimum, or peft.
We recommend using the latest versions meeting the following requirements:

  • torch==2.1 auto-gptq>=0.5.1 transformers>=4.35.0 optimum>=1.14.0 peft>=0.6.1
  • torch>=2.0,<2.1 auto-gptq<0.5.0 transformers<4.35.0 optimum<1.14.0 peft>=0.5.0,<0.6.0

至此,环境部分准备完成。

模型下载

使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py 执行下载,下载模型大概需要 2 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
from modelscope import GenerationConfig
model_dir = snapshot_download('qwen/Qwen1.5-7B-Chat-GPTQ-Int4', cache_dir='/root/autodl-tmp', revision='master')

说明:下载后需要确认下载的Qwen1.5-7B-Chat-GPTQ-Int4文件名称,可能由于解码问题不正确导致后续bug。

代码准备

/root/autodl-tmp路径下新建 chatBot.py 文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。

# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import streamlit as st# 在侧边栏中创建一个标题和一个链接
with st.sidebar:st.markdown("## Qwen1.5 LLM")"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512max_length = st.slider("max_length", 0, 1024, 512, step=1)# 创建一个标题和一个副标题
st.title("💬 Qwen1.5 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")# 定义模型路径
mode_name_or_path = '/root/autodl-tmp/qwen/Qwen1.5-7B-Chat-GPTQ-Int4'# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():# 从预训练的模型中获取tokenizertokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)# 从预训练的模型中获取模型,并设置模型参数,特别注意torch_dtype为auto,否则送入device数据类型不一致model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype="auto",  device_map="auto")return tokenizer, model# 加载Qwen1.5-4B-Chat的model和tokenizer
tokenizer, model = get_model()# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:st.chat_message(msg["role"]).write(msg["content"])# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():# 将用户的输入添加到session_state中的messages列表中st.session_state.messages.append({"role": "user", "content": prompt})# 在聊天界面上显示用户的输入st.chat_message("user").write(prompt)# 构建输入     input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# 将模型的输出添加到session_state中的messages列表中st.session_state.messages.append({"role": "assistant", "content": response})# 在聊天界面上显示模型的输出st.chat_message("assistant").write(response)# print(st.session_state)

运行 demo

在终端中运行以下命令,启动streamlit服务,并按照 autodl 的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。

streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006

最终效果:

在这里插入图片描述

这篇关于[大模型]Qwen1.5-7B-Chat-GPTQ-Int4 部署环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896526

相关文章

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应