【域适应】基于深度域适应MMD损失的典型四分类任务实现

2024-04-12 07:28

本文主要是介绍【域适应】基于深度域适应MMD损失的典型四分类任务实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

MMD (maximum mean discrepancy)是用来衡量两组数据分布之间相似度的度量。一般地,如果两组数据分布相似,那么MMD 损失就相对较小,说明两组数据/特征处于相似的特征空间中。基于这个想法,对于源域和目标域数据,在使用深度学习进行特征提取中,使用MMD损失,可以让模型提取两个域的共有特征/空间,从而实现源域到目标域的迁移。

参考论文:https://arxiv.org/abs/1409.6041

工具

Python

 

方法实现

定义mmd函数
#!/usr/bin/env python
# encoding: utf-8import torch# Consider linear time MMD with a linear kernel:
# K(f(x), f(y)) = f(x)^Tf(y)
# h(z_i, z_j) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i)
#             = [f(x_i) - f(y_i)]^T[f(x_j) - f(y_j)]
#
# f_of_X: batch_size * k
# f_of_Y: batch_size * k
def mmd_linear(f_of_X, f_of_Y):delta = f_of_X - f_of_Yloss = torch.mean(torch.mm(delta, torch.transpose(delta, 0, 1)))return lossdef guassian_kernel(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):n_samples = int(source.size()[0])+int(target.size()[0])total = torch.cat([source, target], dim=0)total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))L2_distance = ((total0-total1)**2).sum(2)if fix_sigma:bandwidth = fix_sigmaelse:bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)bandwidth /= kernel_mul ** (kernel_num // 2)bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)]kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]return sum(kernel_val)#/len(kernel_val)def mmd_rbf_accelerate(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):batch_size = int(source.size()[0])kernels = guassian_kernel(source, target,kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)loss = 0for i in range(batch_size):s1, s2 = i, (i+1)%batch_sizet1, t2 = s1+batch_size, s2+batch_sizeloss += kernels[s1, s2] + kernels[t1, t2]loss -= kernels[s1, t2] + kernels[s2, t1]return loss / float(batch_size)def mmd_rbf_noaccelerate(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):batch_size = int(source.size()[0])kernels = guassian_kernel(source, target,kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)XX = kernels[:batch_size, :batch_size]YY = kernels[batch_size:, batch_size:]XY = kernels[:batch_size, batch_size:]YX = kernels[batch_size:, :batch_size]loss = torch.mean(XX + YY - XY -YX)return loss
定义基于mmd特征对齐CNN模型
# encoding=utf-8import torch.nn as nn
import torch.nn.functional as Fclass Network(nn.Module):def __init__(self):super(Network, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(1, 3)),nn.ReLU())self.conv2 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 3)),nn.ReLU(),nn.Dropout(0.4),nn.MaxPool2d(kernel_size=(1, 2), stride=2))self.fc1 = nn.Sequential(nn.Linear(in_features=64 * 98, out_features=100),nn.ReLU())self.fc2 = nn.Sequential(nn.Linear(in_features=100, out_features=2))def forward(self, src, tar):x_src = self.conv1(src)x_tar = self.conv1(tar)x_src = self.conv2(x_src)x_tar = self.conv2(x_tar)#print(x_src.shape)x_src = x_src.reshape(-1, 64 * 98)x_tar = x_tar.reshape(-1, 64 * 98)x_src_mmd = self.fc1(x_src)x_tar_mmd = self.fc1(x_tar)#x_src = self.fc1(x_src)#x_tar = self.fc1(x_tar)#x_src_mmd = self.fc2(x_src)#x_tar_mmd = self.fc2(x_tar)y_src = self.fc2(x_src_mmd)return y_src, x_src_mmd, x_tar_mmd

代码获取

后台私信;

其他相关域适应问题和代码开发,欢迎沟通和交流。

这篇关于【域适应】基于深度域适应MMD损失的典型四分类任务实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896486

相关文章

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1