llama-factory SFT系列教程 (一),大模型 API 部署与使用

2024-04-12 01:04

本文主要是介绍llama-factory SFT系列教程 (一),大模型 API 部署与使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 背景
    • 简介
      • 难点
    • 前置条件
    • 1. 大模型 api 部署
    • 下一步阅读

背景

本来今天没有计划学 llama-factory,逐步跟着github的文档走,发现这框架确实挺方便,逐渐掌握了一些。
最近想使用 SFT 微调大模型,llama-factory 是使用非常广泛的大模型微调框架;

简介

基于 llama_factory 微调 qwen/Qwen-7B,qwen/Qwen-7B-Chat
我使用的是 qwen/Qwen-7B,如果追求对话效果qwen/Qwen-7B-Chat的效果会好一点;

本系列的主要工作如下:

  1. 大模型 api 部署;直接部署开源大模型体验一下;
  2. 增加自定义数据集;为实现SFT准备数据;
  3. 大模型 lora 微调;
  4. 原始模型 + 微调后的lora插件,完成 api 部署;

使用 llama_factory 的 API 部署有 vllm加速推理;

难点

可能遇到的一些难点:
llama_factory 默认从 Huggingface下载模型,要改为从modelscope下载模型权重;

前置条件

llama_factory 装包

git clone https://github.com/hiyouga/LLaMA-Factory.git
# conda create -n llama_factory python=3.10
# conda activate llama_factory
cd LLaMA-Factory
pip install -e .[metrics]

If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.

export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows

1. 大模型 api 部署

虽然我执行了这条语句 export USE_MODELSCOPE_HUB=1 以为切换到 modelscope的下载源了;
但是 填写模型名称 --model_name_or_path qwen/Qwen-7B,还是会从 huggingface下载模型权重;于是我填写本地绝对路径的方式;

下载模型权重:

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen-7B')
model_dir

输出模型的下载地址如下:

/mnt/workspace/.cache/modelscope/qwen/Qwen-7B

切换目录到刚才从github下载的 llama-factory 文件夹

cd LLaMA-Factory

执行 API 部署脚本,本文选择 api 而不是网页,因为API的用途更广,可供python程序调用,而网页只能与用户交互。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \
--model_name_or_path /mnt/workspace/.cache/modelscope/qwen/Qwen-7B \
--template qwen 
--infer_backend vllm 
--vllm_enforce_eager

可以注意到 LLaMA-Factory 在模型推理时,使用了 vllm 加速;
不出意外的话,经过一段时间的模型权重加载,看到下述图片展示的状态时,那么 API 便部署成功了;
在这里插入图片描述

现在如何给 API 接口传参呢?是不是有点不知所措!
不用急,在图片的红框中,笔者已经给大家标出来了,http://localhost:8000/docs 便是API 的接口文档说明;

有同学会说:“我使用的云端服务器,而且还没有公网 ip,我该那怎么访问这个文档呢?”
笔者:直接点击便可访问,该文档做了内网穿透;

比如,我点击后,弹出了如下页面:https://dsw-gateway-cn-beijing.data.aliyun.com/dsw-70173/proxy/8000/docs

该 API 的文档页面如下图所示:
在这里插入图片描述

下述是官方给的请求体参数

{"model": "string","messages": [{"role": "user","content": "string","tool_calls": [{"id": "call_default","type": "function","function": {"name": "string","arguments": "string"}}]}],"tools": [{"type": "function","function": {"name": "string","description": "string","parameters": {}}}],"do_sample": true,"temperature": 0,"top_p": 0,"n": 1,"max_tokens": 0,"stream": false
}

笔者把下述的请求保存在1.sh文件中,因为下述请求体太长了,在sh文件中进行编辑方便一点;

curl -X 'POST' \'http://0.0.0.0:8000/v1/chat/completions' \-H 'accept: application/json' \-H 'Content-Type: application/json' \-d '{"model": "string","messages": [{"role": "user","content": "你能帮我做一些什么事情?","tool_calls": [{"id": "call_default","type": "function","function": {"name": "string","arguments": "string"}}]}],"tools": [{"type": "function","function": {"name": "string","description": "string","parameters": {}}}],"do_sample": true,"temperature": 0,"top_p": 0,"n": 1,"max_tokens": 128,"stream": false
}'

执行bash 1.sh 便可获得大模型生成的回答了;
在这里插入图片描述
在 API 文档中,还有其他的接口,请读者自行探索。

下一步阅读

还有如下工作敬请期待:

  1. 增加自定义数据集;为实现SFT准备数据;
  2. 大模型 lora 微调;
  3. 原始模型 + 微调后的lora插件,完成 api 部署;

这篇关于llama-factory SFT系列教程 (一),大模型 API 部署与使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895676

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(