AMOS模型适配度及其评价指标【SPSS 051期】

2024-04-11 09:32

本文主要是介绍AMOS模型适配度及其评价指标【SPSS 051期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3 AMOS 模型适配度及其评价指标
结构方程模型本质上是一种验证式的模型分析,检验数据与假设模型的拟合或一致程度, 或者说是用数据拟合假设模型。适配度指标又称拟合度指标,是评价数据与假设模型是否相 互匹配,而不是说明路径分析模型图的好坏,一个适配度完全符合评价标准的模型图不一定 保证是个有用的模型,只能说研究者假设的模型图比较符合实际数据的情况。
在检验整体模型适配度指标时,学者 Hair 等人(1998)建议,应先检验模型参数是否有违规估计现象,可以从下列三个方面着手:(1)有无负的误差方差存在;(2)标准化参数系数是否≥1;(3)是否有太大的标准误存在。如果模型检验结果没有违规估计现象,则可以进行整体模型适配度的检验。
一般而言,整体模型适配度是否达到标准可从以下四个指标来考查:

(1)绝对适配统计量,包括卡方值、卡方自由度比(X2/df)、渐进残差均方和平方根(RMSEA)、

GFI 等;

(2)增值适配度统计量,如NFI、CFI 等;

(3)简约适配度统计量,如 PNFI、临界样本数值 CN、省检拟合优度指标(PGFI)等;

(4)残差分析指标,如标准化残差值和非标准化残差值。论文中我们常用的以下几种拟合指标进行评价:
(1)卡方值,该指标值越小,表示整体模型的因果路径图与实际资料拟合度越高。但是该指标容易受样本容量的影响,样本数越大,越容易达到显著,几乎拒绝所有拟合较好的模型。因此,常用的卡方自由度比作为替代性检验指数。X2/df 越小,表示模型的拟合度越好。一般而言,X2/df<3 表示模型整体拟合度较好;3<X2/df<5 表示模型整体可以接受,但需要改进;X2/df>10 表明整体模型非常差。
(2)渐进均方根误差(RMSEA),该指标受样本数量影响较小,是较好的绝对拟合指标。该指标值越小,则模型拟合度越好。一般认为,RMSEA>0.1 表示模型拟合度不佳;0.08-
0.1 表示模型尚可,具有普通适配;0.05-0.08 表示模型拟合好;RMSEA<0.05 表示模型拟合度非常好。
(3)拟合指标,采用拟合良好性指标(GFI)、常规拟合指标(NFI)和比较拟合指标(CFI),调整拟合良好性指标(AGFI)。这四个拟合指数的数据值都局限于 0-1 之间,都是越接近 1 则表示模型的拟合度越好,一般认为它们的值在 0.8 以上即可认为数据与理论模型的拟合度可以接受。

模型拟合度不佳主要有两个原因,一个是错误的模型结构假设,可能是由于错误的外部界定,使一些观察变量或潜变量被遗漏,也可能是由于错误的内部界定,使模型中的路径被

错误假定或被遗漏;另一个是有关模型分布的假定不满足于正态分布。

当有内部界定错误出现时,可以对模型进行不断的修正以达到改进,其他错误则无法通过模型修正来改进,而需要釆取相应的措施对模型进行改进。模型修正有两种方法,一个是简约修正,即对一些路径进行剔除或限制;另一个是展修正,即对一些路径限制进行放松, 以提高模型拟合程度。
需要注意的是,拟合指数的作用是考察理论模型与数据的适配程度,并不能作为判断模型是否成立的唯一依据。拟合优度高的模型只能作为参考,还需要根据所研究问题的背景知识进行模型合理性讨论。即便拟合指数没有达到最优,但一个能够使用相关理论解释的模型更具有研究意义。
相关资料已上传我的资源,下载链接https://blog.csdn.net/TIQCmatlab?spm=1011.2124.3001.5343

这篇关于AMOS模型适配度及其评价指标【SPSS 051期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893698

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选