【多目标优化求解】基于matlab粒子群算法求解配电网抢修优化问题【含Matlab源码 777期】

本文主要是介绍【多目标优化求解】基于matlab粒子群算法求解配电网抢修优化问题【含Matlab源码 777期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、粒子群算法简介

1 粒子群算法的概念
粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.
PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

2 粒子群算法分析
2.1基本思想
粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置。下面的动图很形象地展示了PSO算法的过程:
在这里插入图片描述
2 更新规则
PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。
在这里插入图片描述
公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。以上面两个公式为基础,形成了PSO的标准形式。
在这里插入图片描述
公式(2)和 公式(3)被视为标准PSO算法。
3 PSO算法的流程和伪代码
在这里插入图片描述

⛄二、部分源代码

%% optimization + PSO 求解 选址_路径优化问题
%% 时间:2021年4月13日:12:09
clc;clear;close all;
%% 初始化种群
N = 300; % 初始种群个数
d = 6; % 空间维数
ger =60; % 最大迭代次数
limit =zeros(2,2);
limit(:,1)=[-46000 63000 ];
limit(:,2)=[-26000 70000 ] ;
% 设置位置参数限制
vlimit(1) = -10000; % 设置速度限制
vlimit(2)=10000 ;
wmax = 0.8;
wmin = 0.4; % 惯性权重
c1 = 1; % 自我学习因子
c2 = 2; % 群体学习因子

model=CreateModel(); %调用模型函数
for i = 1:d
if mod(i,2)==0
x(:,i) = limit(2,1) + (limit(2,2) - limit(2,1)) * rand(N, 1);%初始种群的位置
else
x(:,i) = limit(1,1) + (limit(1,2) - limit(1,1)) * rand(N, 1);
end
end
v = rand(N, d); % 初始种群的速度
xm = x; % 每个个体的历史最佳位置
ym = zeros(1, d); % 种群的历史最佳位置
fxm = 1./zeros(N,1); % 每个个体的历史最佳适应度
fym = inf; % 种群历史最佳适应度 inf无穷大
%% 群体更新
iter = 1;
record = zeros(ger, 2); % 记录器
average=record;
while iter <= ger
fx=zeros(N,1);
for i=1:N
fx(i)= TourLength(model,x(i,:)) ; % 个体当前适应度
end
intermediate_x=zeros(size(xm));
intermediate_x(1:N,:) = xm;
intermediate_x(N + 1 : N + N,1 : d) = x;

for i=1:N*2
intermediate_x(i,d+3)=150;
intermediate_x(i,d+1:d+2)=Tour(model, intermediate_x(i,:)) ; % 个体当前适应度
end
intermediate_x = …
non_domination_sort_mod(intermediate_x, 2, d);
intermediate_x = replace_x(intermediate_x, 2, d, N);

record(iter,:) = intermediate_x(1,d+1:d+2);%最小值记
average(iter,1)=sum(intermediate_x(:,d+1))/N;
average(iter,2)=sum(intermediate_x(:,d+2))/N;
ym=intermediate_x(1,1:d);
fym=record(iter,:);disp(['第',num2str(iter),'次迭代''最小值:',num2str(record(iter,:)),'抢修中心坐标:',num2str(ym)]);
iter = iter+1;
xm=intermediate_x(:,1:d);w=wmax-(wmax-wmin)*(ger-iter)/ger  ;%权重更新
v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新
% 边界速度处理
for ii=1:Nfor jj=1:d       if v(ii,jj)>vlimit(2)  v(ii,jj)= vlimit(2);endif v(ii,jj)<vlimit(1)  v(ii,jj)= vlimit(1);endend
end
x = x + v;% 位置更新
% 边界位置处理for ii=1:Nfor jj=1:d         if mod(jj,2)==0 if x(ii,jj)>limit(2,2)  x(ii,jj)= limit(2,2);endif x(ii,jj)<limit(2,1)  x(ii,jj)= limit(2,1);endelseif  x(ii,jj)>limit(1,2)  x(ii,jj)= limit(1,2);endif x(ii,jj)<limit(1,1)  x(ii,jj)= limit(1,1);endendendend

end

Schedule = code(x, model); %调用
%% 绘制测试结果图
% 故障点
figure(1);
x=model.trouble(1,:);
y=model.trouble(2,:);
for i=1:39
xx=x(i);
yy=y(i);
[ch1]=plot( xx,yy,‘ks’,…
‘MarkerFaceColor’,‘k’,…
‘MarkerSize’,4); hold on
text(xx , yy, num2str(i) ); %带箭头的标注
hold on
end
% 绘制抢修中心
for i=1:3
xx=ym(i2-1);
yy=ym(i
2);
[ch2]= plot( xx ,yy ,‘ko’,…
‘MarkerFaceColor’,‘k’,…
‘LineWidth’,6);hold on
text(xx , yy, num2str( i) ); %带箭头的标注
hold on
end

%% 规划结果
rand(‘seed’, 0);
C= unifrnd( 0.1, 0.2, model.Num_CenterSletectd , 3) ;%unifrnd可以创建随机的连续均匀分布的数组
for i = 1: model.Num_CenterSletectd
Center = Schedule(i).Center;
Client = Schedule(i).Client ;
xx=model.trouble(1,:);
yy=model.trouble(2,:);
for j= Client
x = [ ym(i2-1) , xx(j ) ] ;
y = [ ym(i
2) , yy(j ) ] ;
plot( x ,y , ‘-’ ,‘color’ ,C(i, : ) , ‘linewidth’ , 1.5 );
hold on
end
end

% 标注
legend([ch1, ch2], {‘故障点’ ,‘供电所位置’ }); % ‘Location’,'SouthWestOutside’注释放置位置
xlabel(‘X/m’,‘fontsize’,15,‘fontname’,‘Times new roman’);
ylabel(‘Y/m’,‘fontsize’,15,‘fontname’,‘Times new roman’);
title(‘抢修分布图’);
axis on
set(gcf,‘color’,[1 1 1]); %设置背景颜色
%% 绘制供电半径图
figure(2);
plot(model.trouble(1, : ), model.trouble(2, : ),‘ks’,…
‘MarkerFaceColor’,‘k’,…
‘MarkerSize’,3);hold on
for i=1:3
plot(ym(i2-1),ym(i2),‘ko’,…
‘MarkerFaceColor’,‘k’,…
‘MarkerSize’,6);hold on % 抢修中心分布图 ,半径
x=ym(i2-1);
y=ym(i
2);
r=model.point(3,i)1000;
theta=0:2
pi/3600:2pi;
Circle1=x+r
cos(theta);
Circle2=y+r*sin(theta);
plot(Circle1,Circle2,‘k-’,‘Linewidth’,1);
axis equal
end
legend(‘故障点’ ,‘供电所位置’, ‘供电半径’);
title(‘抢修分布图’);
xlabel(‘X/m’,‘fontsize’,15,‘fontname’,‘Times new roman’);
ylabel(‘Y/m’,‘fontsize’,15,‘fontname’,‘Times new roman’);

for i=1:N
xm(i,d+1:d+2)=Tour(model,xm(i,1:d)) ; % 个体当前适应度
end
xm = non_domination_sort_mod(xm, 2, d);
function f = replace_chromosome(intermediate_chromosome, M, V,pop)

[N, m] = size(intermediate_chromosome);

% Get the index for the population sort based on the rank
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));

clear temp m

% Now sort the individuals based on the index
for i = 1 : N
sorted_chromosome(i,:) = intermediate_chromosome(index(i)😅;
end

% Find the maximum rank in the current population
max_rank = max(intermediate_chromosome(:,M + V + 1));

% Start adding each front based on rank and crowing distance until the
% whole population is filled.
previous_index = 0;
for i = 1 : max_rank
% Get the index for current rank i.e the last the last element in the
% sorted_chromosome with rank i.
current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
% Check to see if the population is filled if all the individuals with
% rank i is added to the population.
if current_index > pop
% If so then find the number of individuals with in with current
% rank i.
remaining = pop - previous_index;
% Get information about the individuals in the current rank i.
temp_pop = …
sorted_chromosome(previous_index + 1 : current_index, 😃;
% Sort the individuals with rank i in the descending order based on
% the crowding distance.
[temp_sort,temp_sort_index] = …
sort(temp_pop(:, M + V + 2),‘descend’);
% Start filling individuals into the population in descending order
% until the population is filled.
for j = 1 : remaining
f(previous_index + j,:) = temp_pop(temp_sort_index(j)😅;
end
return;
elseif current_index < pop
% Add all the individuals with rank i into the population.
f(previous_index + 1 : current_index, 😃 = …
sorted_chromosome(previous_index + 1 : current_index, 😃;
else
% Add all the individuals with rank i into the population.
f(previous_index + 1 : current_index, 😃 = …
sorted_chromosome(previous_index + 1 : current_index, 😃;
return;
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]马瑞,张海波,王建雄,唐海国.考虑负荷时变性的配电网故障抢修恢复策略[J].电力科学与技术学报. 2019,34(02)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【多目标优化求解】基于matlab粒子群算法求解配电网抢修优化问题【含Matlab源码 777期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893449

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时