本文主要是介绍【GA TSP】基于matlab GUI改进的遗传算法求解旅行商问题【含Matlab源码 926期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、TSP简介
旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。
TSP的数学模型
⛄二、遗传算法简介
1 引言
2 遗传算法理论
2.1 遗传算法的生物学基础
2.2 遗传算法的理论基础
2.3 遗传算法的基本概念
2.4 标准的遗传算法
2.5 遗传算法的特点
2.6 遗传算法的改进方向
3 遗传算法流程
4 关键参数说明
⛄三、部分源代码
function varargout = tsp_ga_gui(varargin)
% TSP_GA_GUI MATLAB code for tsp_ga_gui.fig
% TSP_GA_GUI, by itself, creates a new TSP_GA_GUI or raises the existing
% singleton*.
%
% H = TSP_GA_GUI returns the handle to a new TSP_GA_GUI or the handle to
% the existing singleton*.
%
% TSP_GA_GUI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in TSP_GA_GUI.M with the given input arguments.
%
% TSP_GA_GUI(‘Property’,‘Value’,…) creates a new TSP_GA_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before tsp_ga_gui_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to tsp_ga_gui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help tsp_ga_gui
% Last Modified by GUIDE v2.5 25-Feb-2021 15:15:58
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @tsp_ga_gui_OpeningFcn, …
‘gui_OutputFcn’, @tsp_ga_gui_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before tsp_ga_gui is made visible.
function tsp_ga_gui_OpeningFcn(hObject, eventdata, handles, varargin)
global hnds
global r nn dsm asz G
global startf
% Choose default command line output for tsp_ga_gui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes tsp_ga_gui wait for user response (see UIRESUME)
% uiwait(handles.figure1);
hnds=handles;
startf=false; % start flag
asz=10; % area size asx x asz
nn=str2num(get(handles.nn,‘string’)); % number of cities
ps=str2num(get(handles.ps,‘string’)); % population size
r=asz*rand(2,nn); % randomly distribute cities
% r(1,:) -x coordinaties of cities
% r(2,:) -y coordinaties of cities
dsm=zeros(nn,nn); % matrix of distancies
for n1=1:nn-1
r1=r(:,n1);
for n2=n1+1:nn
r2=r(:,n2);
dr=r1-r2;
dr2=dr’*dr;
drl=sqrt(dr2);
dsm(n1,n2)=drl;
dsm(n2,n1)=drl;
end
end
% start from random closed pathes:
G=zeros(ps,nn); % genes, G(i,:) - gene of i-path, G(i,:) is row-vector with cities number in the path
for psc=1:ps
G(psc,:)=randperm(nn);
end
update_plots;
% — Outputs from this function are returned to the command line.
function varargout = tsp_ga_gui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on button press in randomize.
function randomize_Callback(hObject, eventdata, handles)
global r nn dsm asz
nn=str2num(get(handles.nn,‘string’)); % number of cities
r=asz*rand(2,nn); % randomly distribute cities
% r(1,:) -x coordinaties of cities
% r(2,:) -y coordinaties of cities
dsm=zeros(nn,nn); % matrix of distancies
for n1=1:nn-1
r1=r(:,n1);
for n2=n1+1:nn
r2=r(:,n2);
dr=r1-r2;
dr2=dr’*dr;
drl=sqrt(dr2);
dsm(n1,n2)=drl;
dsm(n2,n1)=drl;
end
end
update_plots;
% — Executes on button press in circle.
function circle_Callback(hObject, eventdata, handles)
global r nn dsm asz
nn=str2num(get(handles.nn,‘string’)); % number of cities
r=zeros(2,nn);
% circle
al1=linspace(0,2pi,nn+1);
al=al1(1:end-1);
r(1,:)=0.5asz+0.45aszcos(al);
r(2,:)=0.5asz+0.45asz*sin(al);
% r(1,:) -x coordinaties of cities
% r(2,:) -y coordinaties of cities
dsm=zeros(nn,nn); % matrix of distancies
for n1=1:nn-1
r1=r(:,n1);
for n2=n1+1:nn
r2=r(:,n2);
dr=r1-r2;
dr2=dr’*dr;
drl=sqrt(dr2);
dsm(n1,n2)=drl;
dsm(n2,n1)=drl;
end
end
update_plots;
function nn_Callback(hObject, eventdata, handles)
update_plots_nn_ps;
% — Executes during object creation, after setting all properties.
function nn_CreateFcn(hObject, eventdata, handles)
% hObject handle to nn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end
function ps_Callback(hObject, eventdata, handles)
update_plots_nn_ps;
% — Executes during object creation, after setting all properties.
function ps_CreateFcn(hObject, eventdata, handles)
% hObject handle to ps (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end
⛄四、运行结果
⛄五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]程荣.遗传算法求解旅行商问题[J].科技风. 2017,(16)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
这篇关于【GA TSP】基于matlab GUI改进的遗传算法求解旅行商问题【含Matlab源码 926期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!